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The Question 

 A definitive answer requires precise definition of 
“restore and maintain.” 

 Lacking that, we study and report on trends in 
sandbars and sand storage: 

– Do management actions (dam releases) build 
sandbars? 

– Can we expect these management actions continue to 
achieve the desired results indefinitely? 

Is there a “Flow-Only” operation (i.e. a strategy for dam 

releases, including managing tributary inputs with BHBFs, 

without sediment augmentation) that will restore and 

maintain sandbar habitats over decadal time scales? 



Outline of Presentation 

 Sandbar “dynamics” 

– Why do sandbars get bigger and smaller? 

 Long-term trends in sandbars 

– Issues of sample size 

– Can we separate short-term dynamics from long-term 
trends? 

– What are the long-term trends? 

 Trends in sand storage 

– How is this different from trends in sandbars? 

– Why does it matter and how will this knowledge inform 
management decisions? 

– How do we measure it? 



Preview 
 Main Points 

– Sandbars above the 8,000 cfs stage at the NAU long-term 
monitoring sites 

 In Marble Canyon, most are smaller now than in 1990 

 In Grand Canyon, most are larger now than in 1990 

– Sand Storage 

 Floods and high flows deplete sand from storage 

 Tributary inputs put sand into storage 

 Need to repeat measurements over long reaches to 
understand long-term trends 

 Key Concepts 

– The difference between sandbar response and sand 
storage 

– Sandbar response is a function of both hydrology and sand 
storage 



Sandbar Dynamics:  

 Sediment enriched floods generally build 
sandbars at “high” elevations 

 Sediment enriched low flows generally build 
sandbars at “low” elevations 

 All non-enriched flows generally erode sandbars: 
higher flows do it faster 

– Rate of post-flood sandbar erosion positively correlated 
with flow and inversely correlated with tributary sand 
input 

 The sandbars we measure when monitoring are a 
function both of sediment supply condition and 
recent flows 

Hazel and others (2010); Schmidt and Grams (2011) 



Anatomy of a Sandbar 

~50 to 90% of the sand in Marble Canyon is stored in eddies.  About 90% of 
the sand in eddies is stored below the stage elevation reached by a flow of 
8,000 ft3/s (Hazel et al., 2006, J. Geophys. Res., 11). 



Why do sandbars 

change? 

 Sand Supply 

– More sand  larger 
bars 

 Hydrology (flow) 

– Sandbar morphology 
(shape) adjusts to 
flow 

– Some eddies may 
tend to gain sand at a 
certain flow while 
others lose sand at 
the same flow 

Grams and others (2010) 



Discharge-dependent sediment 

redistribution: What does it mean? 
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22 measurements from 1993 to 2008 

Preliminary Results -- Subject to Review and Revision 



Discharge-dependent sediment redistribution 
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Small sandbar in 
period of negative 
sediment budget, 
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More sand in eddy at lower flows 

17 measurements from 1996 to 2008 

Preliminary Results -- Subject to Review and Revision 



 

November 26, 2010 -- ~10,000 cfs 

RM 30 – Dynamic and “Collects” Sand at High Discharge 

High-elevation sand 
from 2008 high flow 



 

August 8, 2011 -- ~25,000 cfs 

Eroding cutbank 

Submerged bar 

RM 30 – Dynamic and “Collects” Sand at High Discharge 



September 4, 2011--~15,000 cfs (following 3 months of over 20,000 cfs) 

Smaller high-elevation bar eroded by 
2011 equalization flows 

Low-elevation bar formed by 
2011 equalization flows 

RM 30 – Dynamic and “Collects” Sand at High Discharge 

Preliminary Results -- Subject to Review and Revision 



 Does not respond 
differently to 
different flows 

 Always about the 
same 

 Need greater supply 
to build larger bar 

October 2011 

October 2010 

RM 51 – “Can’t get it to do anything” 

Preliminary Results -- Subject to Review and Revision 



Floods cause increase in sandbar size at middle-and high-

elevations:  

Both supply and discharge are important 

 1996: high flow builds sandbars despite lack of supply 

 2004 and 2008: flow and supply work together for 
stronger bar building response 

1996 2004 2008 1996 2008 

*middle- and high-elevation = above 8,000 ft3/s stage 

Hazel and others (2010); Schmidt and Grams (2011) 



Floods cause decreases in sand storage at low-elevations:  

Discharge most important but supply makes a difference 

 1996: high flow greatly depletes low-elevation storage 

 2004 and 2008: much less depletion of low-elevation 
storage 

1996 2004 2008 1996 2008 

Hazel and others (2010); Schmidt and Grams (2011) 

*low-elevation = below 8,000 ft3/s stage 



Sandbars erode following floods, but at 

different rates 

 Both flow and supply affect sandbar 
deposition and erosion 

 Can we separate the two effects? 

Tributary resupply  

lower erosion rates 
Higher flows  

higher erosion rates 

Grams and others (2010); Schmidt and Grams (2011) 



Long-term Trends in Sandbars 
 What is existing long-term dataset? 

– 24 sites for 1996 to 2008 total site storage change 

– 30 sites for 1990 to 2011 high-elevation storage change 
(above 8,000 cfs stage) 

 How many sandbars are there? 

– Schmidt mapped 55 of the 140 km between Lees Ferry and 
Phantom Ranch 

– Found 183 eddies that have had at sometime between 1935 
and 1996 a sandbar larger than 1000 m2 in area 

– Extrapolated out, that means about 1600 such sites between 
Lees Ferry and RM 277 

– We are monitoring fewer than 2% of the sites that 
have had sandbars at some time in the past 

Schmidt and others (2004) 



Long-term Trends in Sandbars 

 Monitoring sandbars as campsites: 

– About 400-500 campsites between Lees Ferry and 
Diamond Creek that may be associated with sandbars 

– About 6% are long-term monitoring sites.  

 

 Monitoring sandbars as backwaters: 

– About 880 potential backwater locations between Lees 
Ferry and Diamond Creek 

– Monitored all by inventory in 2008 

– Monitored 105 by topographic measurement in 2008 

– About 3% are long-term monitoring sites.  



Long-term Trends in Sandbars: What to do 

about undersampling 

 Undersampling might be okay if we knew 
monitoring sites were representative 

– Sites might be representative for middle and high-
elevation sand in Marble Canyon (next slide) 

– Don’t know about Grand Canyon 

– Probably not representative for low-elevation sand 
anywhere 

 Initiated repeat mapping of long (~30-mi) 
reaches 

– Monitors all sandbars in reach 

– Also basis for long-term change in total sediment 
storage (more on this later) 

– High-elevation sand – above 25,000 cfs stage 

– Mid-elevation sand –8,000-25,000 cfs stage 

– Low-elevation sand – below 8,000 cfs stage 



Sandbar Monitoring Sites Compared to all 

Sandbars in 6 Short Reaches 

Positive correlation 
between response 
at monitoring sites 
and response for 
encompassing 2-mi 
reach (between RM 
0 and 87) 

Conclusion:  Monitoring sites provide a good representation of both 

sandbar erosion and sandbar deposition at relatively large eddy 

sandbars above the 8,000 cfs stage when averaged over long 

reaches. 
Preliminary Results -- Subject to Review and Revision 



But the Discharge-dependence is still 

an issue 

Slope of  
Q-V 
relation 

All elev. 
(eddy & 
channel) 

High and 
Mid-elev. 
eddy only 

Negative  
(p < 0.10) 

9 2 

Positive    
(p < 0.10) 

7 19 

Flat 14 11 

For sites with a known 

discharge dependence, we 

can address the bias 

Preliminary Results -- Subject to Review and Revision 



Sandbar with net increase in size: 122-mi 

 

October 13, 2011 

January 13, 1996 

Preliminary Results -- Subject to Review and Revision 



Sandbar with net decrease in size: 81-mi 

 

October 7, 2011 

February 28, 1995 

Preliminary Results -- Subject to Review and Revision 



All 31 sites: 

Sandbar volume  

relative to 1990 

and normalized 

to 12,000 cfs 
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Preliminary Results -- Subject to Review and Revision 



Median Value: 

Sandbar volume  

relative to 1990 

and normalized 

to 12,000 cfs 

Preliminary Results -- Subject to Review and Revision 



Mid- and High-elevation Sandbar 

change at Sandbar Monitoring Sites: 

1990-2011  

Reach Number of 
Sites 

Number 
With 

Decreasing 
Trend 

Number 
With 

Increasing 
Trend 

Number no 
change 

Marble 
Canyon 

12 7 4 1 

Grand 
Canyon 

19 2 13 4 

TOTAL 31 9 17 5 

Preliminary Results -- Subject to Review and Revision 



Mid- and High-elevation Sandbar 

change at Sandbar Monitoring Sites: 

2009-2011  

Reach Number of 
Sites 

Number 
With 

Decreasing 
Trend 

Number 
With 

Increasing 
Trend 

Number no 
change 

Marble 
Canyon 

12 6 4 2 

Grand 
Canyon 

19 11 5 3 

TOTAL 31 17 9 5 

Preliminary Results -- Subject to Review and Revision 



What is the signal that drives changes 

in sandbars? 
 The bed of the river (upstream eddies and pools in the main 

channel) 

– To build sandbars in eddies, you need an upstream supply on the 
bed of the river 

– If the supply is depleted, there will be fewer and smaller sandbars, 
like Glen Canyon and Hells Canyon on the Snake River 

– Even a flat long-term trend requires sand resupply 

 

 
 High flows (and 

floods) deplete 
supply 

 Inputs add 
supply 

 



Long-term Trends in Sand Storage 
 What is the cumulative long-term effect of 

repeated sand depletions and periodic resupplies 
by tributaries on sediment storage? 

 Three possibilities: 

1) Declining storage: expect sandbar deposition and 
sandbar size to decline 

2) Constant storage: expect dynamically stable sandbars 

3) Increasing storage: expect dynamically increasing 
sandbars 

 Until we can measure or estimate the long term 
trend, our predictions for the future of sandbars 
are only speculation 



Low-elevation Sandbar change at 

Sandbar Monitoring Sites: 1996-2008  

Reach Number of 
Sites 

Number 
With 

Decreasing 
Trend 

Number 
With 

Increasing 
Trend 

Number no 
change 

Marble 
Canyon 

11 2 2 7 

Grand 
Canyon 

19 9 5 5 

TOTAL 30 11 7 12 

Preliminary Results -- Subject to Review and Revision 



What can the NAU sandbar monitoring sites tell us about long-

term trends in sediment storage? 

1996 2004 2008 1996 2008 

Hazel and others (2010); Schmidt and Grams (2011) 

Reach Number 
of Sites 

Number 
Decreasing 

Number 
Increasing 

No 
change 

Marble Canyon 11 2 2 7 

Grand Canyon 19 9 5 5 

TOTAL 30 11 7 12 

They tell us 

about these 

sites: results 

can’t be scaled 

up to longer 

reaches! 



Reach-scale Sand Storage Change:  

First Attempt (aka FIST) 

 Sediment flux record: 15 min 

 Monitoring reaches: 6 surveys in 9 years 
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Mapping within 

monitoring reaches 

 Make digital 
elevation models 
like this for each 
survey  

 Compute changes 
by differencing 
the two maps: 

 

View is looking upstream 

Black dots are 0.1 mi intervals 

Perspective view of 

DEM from 

Multibeam sonar 

May 2009 

High : 9.4

Low : -10.96
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Storage change in short reaches: 2002 to 2009 
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 2002 to 2004: 6 reaches (13 mi in 66-mi reach) 

 2002 to 2009: 3 reaches (7 mi in 31-mi reach) 

 Reaches below tributaries show most accumulation leading up to 
2004 flood and  most loss during flood 

 The three reaches measured in 2009 show accumulation between 
2004 and 2009 (the remainder of the inputs that occurred before 
the 2008 flood) 

Preliminary Results -- Subject to Review and Revision 



Perspective: Evidence for long-term 

sediment loss in Marble Canyon 

The limited data that are available indicate sediment loss from pools between 

1951 and 2000 (no major change 2000-2009) 
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Storage change in short reaches: 2002 to 2009 
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 2002 to 2004: 6 reaches (13 mi in 66-mi reach) 

 2002 to 2009: 3 reaches (7 mi in 31-mi reach) 

 Reaches below tributaries show most accumulation leading up to 
2004 flood and  most loss during flood 

 The three reaches measured in 2009 show accumulation between 
2004 and 2009 (the remainder of the inputs that occurred before 
the 2008 flood) 

Starting 
point? 

2012? 

Preliminary Results -- Subject to Review and Revision 



Reach-scale Sand Storage Change for RM 30 to 

RM 61: 2004 to 2009 
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 Repeat surveys: 
– + 521,000 metric tons in 

the three reaches 
monitored 

– Extrapolates to over 2 
million metric tons for 
30-mile segment 

 Measurements of 
sand transport at 
gages: 

– + 220,000 metric tons for 
30-mile segment 

 The direction is correct (both positive), but our 
measurements of the bed indicate much larger 
change than is possible.  WHY? … Preliminary Results -- Subject 

to Review and Revision 



Sites of erosion and deposition 

are highly localized 

High : 9.4

Low : -10.96
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The storage change in just a couple of pools 

matches the net storage change for an entire 

50 km reach 

Preliminary Results -- Subject to Review and Revision 



32

31

30

How long of a reach must be measured to 

eliminate local geometric effects? 

Single eddy 

with positive 

storage-Q 

relation. 

Single eddy with 

negative storage-

Q relation. 
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Preliminary Results -- Subject to Review and Revision 



Conclusions – The sandbars you can see 

1990 to 2011 

 Hydrology (flow) causes redistribution of sand 

 Supply  

 Long-term trends in mid- and high-elevation sand 
at the long-term monitoring sites: 

– Marble Canyon (above LCR) 

 Majority of sites have less sand 

– Grand Canyon (below LCR) 

 Majority of sites have more sand 

– Oct. 2009 to Oct. 2011 (equalization flows):  

 17 out of 31 sites have less sand 

 Caveat: very small sample size 



Conclusions 
 Sandbars above the 8,000 cfs stage at the NAU long-term 

monitoring sites 

– In Marble Canyon, most are smaller now than in 1990 

– In Grand Canyon, most are larger now than in 1990 

– 2009 to 2011 (equalization flows): 17 out of 31 sites have less sand 

 Sandbar response is strongly affected by hydrology at many 
sites (masks effects of storage). 

 Sand in storage (the bank account) is needed to sustain bar 
building response (the ability of eddies to trap sand can be 
diminished by declining supply)  

 Sand Storage 

– Floods and high flows deplete sand from storage 

– Tributary inputs put sand into storage 

– Need to repeat measurements over long reaches to 
understand long-term trends 

 


