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ABSTRACT

In the Marble and Grand Canyons of the Colorado River the riparian environment is sensitive to
the discharge and discharge history of the River which are tightly controlled by the Glen Canyon Dam.
As a consequence, the manner in which the 5len Canyon Dam is operated can substantially benefit or
damage the riparian environment of Grand Canyon National Park. In order to ascertain the relationship
between water discharge at the Dam and the flow-affected downstream environment, a detailed physical
understanding of the fluid mechanical and sediment transport processes in this river between Lake Powell

* and Lake Mead, as well as accurate flow and sediment transport models are essential. Only recently have
the data necessary to develop and test such models been procured, and this paper is the first attempt to
use this information as a foundation for comp(ebensf\;e algorithms to compute flow and sedimeat
transport in the Marble and Grand Canyon segments of the Colorado River. Owing to the absence of
detailed topographic data for this river corridor, a reach-averaged approach' was taken;.therefore, the
effective roughness coefficient had to be determined empirically. Topographic cross-sections that
previously had been obtained every mile along the River were averaged for regions of similar riverbed
geology generating mean channel geometries for ten characteristic reaches. These data were combined
with (1) cross-sectionally averaged velocities, which were determined from discharge at the time of the
topographic study, and (2) a set of dye advection measurements in order to calculate roughness
coefficients as a function of stage for each of the ten characteristic reaches. A discharge wave phase
speed also was used for this purpose, but the number of characteristic reaches had to be reduced for this
calculation because of the length of the wave. From the geometries of the characteristic reaches and the

stage-dependent roughness coefficients for each of them, all of the important reach-averaged flow

properties were caiculated and tabulated. Suspended sand transport was then determined based on the
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calculated velocity fields and boundary shear stresses. We show that a substantial :;mount of suspended
sand has been retained in the upstream part of the system because of the increasing mean river width and
that some is retained there by the peak power mode of operation of the Dam. The latter accurs because
the shape of the discharge wave changes between the Dam and the mouth of the Little Colorado River,
reducing the duration of the period of peak discharge and forcing deposition of suspended sand on the
channel bottom. Our results indicate that it is possible to construct flow and sediment transport models

of sufficient accuracy to be used as the basis for delicate dam management decisions.

. INTRODUCTION

The Colorado River not only serves as a major access route to much of the Grand Canyon
National Park, but its flow and consequent sediment transport also determine, in large measure, the
salient characteristics of the narrow river corridor at the bottoms of the Marble and Grand Canyoas (see
Figure 1). Moreover, since 1963 discharge in this river has been controlled to a very high degree by
hydroelectric power production at the Glen Canyon Dam. Under normal conditions no clastic sediment
passes through this structure, so most of the sand thit‘r forms the substrate of the riparian environment is a
relic of pre-dam conditions or has been added to the Colorado by the Paria and Little Colorado Rivers,
which enter the main stem 27km (0.8 miles downstream from Lees Ferry, the location from which
distance along the river is measured) and 125km (at River Mile 61.4) downstream from the Dam
respectively. The issues of sand transport into the Colorado River, redistribution of sand along the
Colorado, and loss of sand from this river to Lake Mead are of major environmental concern, and in
_order to address these issues satisfactorily a comprehensive understanding of flow in this coarse-gravel-
bedded river is necessary. In particular, accurate, well tested, pbysicaily based algorithms for
computation. of flow and sediment transport are required for: (1) proper interpretation of physical,
chemical and biological field data collected in the riparian corridor as it relates to river flow history,
especially but not exclusively with respect to bank and bar processes, (2) accurate calculation of rates of

sediment accumulation or loss from the system under various discharge histories imposed on the River by

hydroelectric power production or spillage of water at the Glen Canyon Dam, and (3) prediction of
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redistribution of sediment along the channel in response to long term changes in water discharge in the

main stem and sediment discharges from the major tributaries.

Nature of the Geomorphic System

Between Lake Powell and Lake Mead the Colorado River flows through the Marble and Grand
Canyons. In this segment it is cut deeply into a sequence of rocks ranging from Jurassic to PreCambrian
in age and varying from sandstone and shale ihrough limestone to gneiss and schist in composition. Ata
discharge 25,000cfs (708 m3/s) the River has a mean surface width of 80.5m and a mean depth of 6.9m,
but the reach-averaged surface width at this discharge varies from 60m in the Inner Granite Gorge to
110m somewhat upstream of Furnace Flats depending prin;arily on the rock type at river level.

The most obvious geomorphologic characteristics of the river corridor in this region anise from
its deep ingision. The steep walls of the main canyon promote the formation of talus slopes aloﬁg the
edges of the River, and the steep walls of the tributaries make the canyon floor susceptible to blockage by
fans of coarse gravel resulting from debris flows and floods originating in these tributaries. As was
pointed out by Dolan and others (1978), and as has iJ;en emphasized by Howard and Dolan (1981) and
more recently by Webb (1992), most of the rapids in the Marble and Grand Canyons are due to deposits
of this type. The fluid mechanical consequence of a debris fan in this system is to produce a hydraulic
control at the site of maximum width and depth constriction. This lead; to an upstream pool from the
damming effect of the hydraulic control followed by a rapid that begins at the site of least cross-sectional
area. In many instances, there also are pools somewﬁat downstream of the rapids. According to Smith
(in preparation) the downstream pools are produced by the impacts of boulders that have saltated down
the face of the debris barriers during large pre~-dam floods on the main stem. At the beginning of a high
flow event there is likely to be sand and gravel covering the beds of the downstream pools, but as the
flow increases in intensity the sand goes into suspension and the gravel is crushed and removed. Under
the most extreme conditions Smith claims that a substantial fraction of the sediment on the beds of these

pools is removed and the incoming boulders impact directly on bedrock pulverizing it, and thereby

permitting local excavation of the bed of the river. In pre-dam times these downstream pools, therefore,
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served as sites for rapid particle size reduction, contribﬁting in a major way to the removal of coarse,
tributary derived, material from the main channel. In essence, they are the direct result of what Smith
believes to be the major bedrock excavation mechanism in active, deeply incised rivers. Asa
consequence of the incision, the dominant geomorphological characteristics of the river corndor arise
from the interplay of random hydrologic events in small tributaries that have caused large mass
movements through them, and large pre-dam discharges in the main stem, with local variations in these
characteristics resulting from the bedrock geology at river level.

Were there no other sediment sources, the bed of the Colorado River in the Marble and Grand
Canyons would be coarse gravel derived primarily from the debris fans. Significant amounts of fine
material, however, were transported down the main stem in pre-dam times, and some alway; has been
added from floods in the Paria and Little Colorado Rivers. Supeﬁmposed on what otherwise would have
been a gravel bedded stream, therefore, was a significant flux of siit and sand pfoduced by erosion of the
fine grained sedimentary rocks that cover the Colorado Plateau. Currently no silt or sand bypasses the
Glen Canyon Dam, but fine material derived from the Paria and Little Colorado Rivers is still
transported through the Grand Canyon and into Lake Mead The average annual sand load derived from
debris flows and floods on all of the other tributaries appears to be substantially less than that contributed
by the Paria and Little Colorado River. At discharges above 10,000cfs (283m3/s) this sand fraction
moves through the otherwise coarse bedded system largely in suspension, and relative to the gravel it has'
a very short residence time in the system.

In pre-dam times, this segment of the Colorado River was swept each Spring by snow melt
floods that were more than five times greater in daily discharge than have been most post-dam releases,
and as indicated above, the current geomorphology of the system clearly reflects the processes that
occurred during these high flow events. The Glen Canyon Dam has substantially reduced the maximum
daily discharges that occur each year, but it also has cut off the supply of sand from the main stem above
the mouth of the Paria River. As a consequence, with the exception of future debris flows , the deposits

of which can be reworked only in minor ways by the present and expected low main stem flows, the

morpbology of the fluvial system is ﬁxed. Neither in pre-dam nor current times has enough sand been
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added to the system relative to its transport capacity to allow the fine material to exert a dominant control
on river geomorphology. Basically what is supplied to lﬁe system is transported throughout it, the
balance being maintained locally through expansion and contraction of the fraction of the<channel bed -
covered by sand. These sand patches could not smooth the bed of the channel in pre-dam times because
most of the material was washed through by the large snow melt floods each Spring, and they cannot
smooth the bed of the channel at present because the supply is still too low for the imposed discharge.

As has always been the case, the lateral bars of the system (composed primarily of sand) are in
areas of flow convergence, but grow or shrink in response to the supply of the sa‘nd‘ from upstream, the
discharge history of the river, and the geometry of the channel (imposed primarily by mass moverhent
processes). From a geologic point of view all of the sand deposits are ephemeral. As the stage rises sand
is eroded from local areas of boundary shear stress divergence and it is deposited in zones of boundary
shear stress convergence, the latter being especially common in regions of flow separation along the
edges of the channel. In pre-dam times these ﬂow‘sr;zparation, or eddy deposits, also contained a
significant amount of silt. Owing to the normal tendency for eddy bars to fill embayments along river
channels, for them to collect fragments of riparian plants some of which can root, and for them to
maintain elevated ground water tables for extended periods of time, they produce extremely important
substrates for ripanian biological activity, particularly in arid regions and specifically along the Colorado
River m the Grand Canyon. In fact, Smith (1991) claims that eddy deposits comprise the major means of
channel straightening and bank repair in many active rivers, Channel edge deposition in the Colorado
River is especially effective at high stage, when the river surface is elevated well above the eddy bars,
when the eddy circulation is strong, and when there is more sediment in suspension. Large perched sand -
deposits from pre-dam and relatively recent high stage events also serve as the campsites of preference

for rafters and hikers.

Nature of the Management Problem

As a consequence of major changes in both the flow and the sediment transport regimes in the

Colorado River between Lake Powell and Lake Mead, the riparian system can no longer operate as it did
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in pre-dam times. At present the Dam is operated primarily for power production during times of peak
demand each day, and as a consequence, a large amplitude discharge wave is released daily. It has been
argued that the rise and fall of the water surface in association with these large amplitude discharge waves
promotes erosion of the most desirable eddy beaches and should be banned. The question thus arises as
to whether the Glen Canyon dam could be operated to optimize power production while at the same time
satisfying the constraints of the "Law of the River” and minimizing the environmental damage now being
done to the Grand Canyon National Recreation Area and Grand Canyon National Park. Until recently
the latter was not considered an important factor in dam operations, but it is likely that environmental
considerations eventually wil! become of great importance in dam management decisions. In this system
as well as in many others, substantial improvement in environmental protection probably can be effected
with minimal revenue loss, if the flow and sediment transport processes in the river are thoroughly
understood, carefully modeled, and properly taken into account when developing operational plans.
Balancing the various environmental and economic factors involved in the operation of 2 dam is 2
political consideration, but the development of a solid~ scientific understanding that permits operational
decisions to be made with insight, and the environm;ntal consequences of those decisions to be made
clear, is a scientific and environmental engineering issue. .

In 1989 the U.S. Geological Survey generated a plan for comprehensive examination of the
flow, sediment transport, and water quality in the Colorado River be_tween Lake Powell and Ldke Mead.
The goal was to develop the foundations of knowledge required for astute management of this river.
This plan was devised partly in support of Phase II of GCES (Glea Canyon Environmental Studies) but
also in response to a critical national need for sound-scientific information on the basic hydraulic,
sediment transport, geomorphic, and environmental chemical processes controlling the riparian
environment of the Colorado River in the Marble and Grand Canyons. At the time the U.S.G.S. plan
was composed, conjecture on how dam operations had affected and were affecting the downstream

environment far outweighed any scientific knowledge on this issue. A primary goal of the facet of the

U.S. Geological Survey plan with which this report is concerned was to develop a comprehensive

understanding of flow and sediment transport in the Colorado river such that fluid mechanically based
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water and sediment transport models could be developed, and used as management tools. This report
presents results of the first phase of analysis of data collected in 1991 as part of the U.S.Geological
Survey field program. -

It is the view of the authors of this report that first the flow and second the sediment transport
that arises in response to a particular discharge history must be thoroughly understood if the system or
any part of it is to be properly managed or truly protected. Short of changing the design of the intake
struc;ture: at the Dam, or adding sediment ro the River from a slurry pipeli;ae, management of the
riparian environment is through the rate at which water is discharged at the Glen Canyon Dam as a
function of time, and if an accurate understanding of the consequences of such discharges is not |
developed then effective management of the system is impossible. Moreover, without such knowledge
past, present and future studies pertaining to the effects of operation of the Glen Canyon Dam cannot be
put into a proper écientiﬁc context, and thus are likely to be misinterpreted and misused. Knowing the
relationship of environmental phenomena to discharge and discharge history is essential if results from
detailed field studies are to be generalized properly. A thorough understanding of flow and sediment
transport in the Colorado River between LakePowe‘ll.and Lake Mead is essential for sensitive
management of the riparian environment of Grand Canyon National Park, and such an understanding can
only be obtained through a carefully designed, well balanced research project that includes an innovative

field measurement program, a comprehensive, fluid mechanically based data analysis component and

state-of-the-art mathematical modeling.

CHARACTERIZATION OF THE FLOW
Field Measurements
The above mentioned U.S. Geological Survey research plan was based in part on the expectation
that high resolution air photogrammetry would be used by the Bureau of Reclamation to make a high
precision topographic map of the River corridor and that this important information would be available

for the analysis phase of the project. Unfortunately this basic topographic information has not yet been

procured. To date only fifty of approximately three bundred miles of the River have been mapped. As
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might be expected, the lack of this essential data has had a negative impact on the flow and sediment
transport modeling program, because high accuracy flow and sediment transport calculations cannot be
carried out for local areas in a river for which the bed and bank topography is known only cmdely,.'if at
all. As a consequence, the analysis presented in this paper is for the large scale system and is based on
199 cross-sections measured with an echo sounder approximately every mile between Lees Ferry and
Diamond Creek (see Figure 1) by Richard Wilson .of the U.S. Geological Survey.

Owing to the typical large daily variation in discharge at the Glen Canyon Dam, stage as a
function of location and time is an extremely important variable. Consequently a network of
approximately 50 temporary, internally recording pressure g;ges was deployed along the gorge. By late,
1990, gages were emplaced approximately every five miles between Lees Fe;-ry and Lake Mead and were
recording usable data. In the first half of calendar year 1991, the pressure transducer at each of these
measurement sites was being sampled only once every fifteen or once every thirty minutes making
determination éf rapid changes in stage quite inaccurate. By mid-summer 1991, however, the relatively
crude data loggers that were emplaced initially had bqgn replaced by ones able to measure average river
surface elevation every five minutes. All of the pres:surc transducers were carefully calibrated and
delicately emplaced by Robert Gauger of the Flagstaff Field Office of the U.S. Geological Survey, and s
this temporary stage gage network has yielded an extremely high quality data set, one that has made.
possible the conclusions contained in this report. Data from this network has been especially important .
in light of the absence of detailed topography for the river\corridor.

Accurate velocity measurements as a function of stage at specific sites along a river are useful
only when the topography and bed roughness at those sites also are known. In the absence of detailed
topographic information, regicnally averaged velocity data such as obtained from dye studies is of greater
value. Therefore, four large scale dye studies were planned by Julia Graf of the Tucson Office of the
U.S. Geological Survey. Two of these have been carried out to date and the results are described by
Graf (1992). These were accomplished during: (1) a steady discharge of 15,000cfs (425m3/s). and (2) a

flow in which the discharge varied from 3,000cfs (85m3/s) to 26,000cfs (736m3/s) repetitively for eight

days. Nevertheless, additional data are badly needed for a steady discharge of 5,000cfs (142m3/s) and

¢
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for a steady flow with a pezk discharge at or above power plant capacity (32,000cfs or 9O7m3/s).
Information from each steady dye study provides a direct constraint on the reach-averaged bed roughness
at the stage of that dye release. In addition, dye advection data from a large amplitude, unsteady flow

provides a sensitive test of a discharge wave propagation model.

Modeling Flow in Long Segments of Large Rivers

When attemptiné to understand flow and flow related characteristics such as sediment transport
in large rivers it is rarely feasible or advantageous to construct a three-dimensional model of the entire
fluvial system. In these situations the most effective modeling strategy is to construct a simple global
algorithm that predicts the general proplnies of the flow m any given segment of the system and then to
use this global algorithm to drive quasi steady, multi-dimensional models for specific sites of particular
interest. The local models then can be used to evaluate the detailed flow and sediment transport
structures in reaches of known morphology and roughness, and to evaluate some of the paramet;xs
required in the global model. For example, our large scale model of the flow in the Colorade River
between Lees Ferry and Diamond Creek contains an ::mpirically determined roughness coefficient field.
If one were to set these roughness coefficients theoretically, the effects of large roughness elements on
the riverbed and the effects of rapids would have to be calculated using local models of rough bedded
straight reaches (such as that of Wiberg and Smith, 1991), of curved reaches (such as those of Smith and
McLean, 1984, and Nelson and Smith, 1987) and of debris-fan-caused constrictions (such as currently
under development by Wiele and Smith).

In order to construct an accurate one-dimensional flow model it is necessary to have either 2
continuous field of cross-sectional area as a function of stage or a discretely sampled field from which a
spectrum that contains a full representation of the essential variations can be calculated: Moreover, for
an accurate two- or three-dimensional model not only must this requirement be met, but also a continuous
or densely sampled field of cross-sections is necessary. In most parts of the Colorado River, this means

that cross-sections would have to be measured every 20m or so, instead of every mile (1.6km) along the

trace of the River. Owing to the absence of topographic information for the bed and banks of the
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Colorado River sufficient to permit construction of three-, two-, or even one-dlmensxonal flow and
sediment transport models, a reach-averaged approach bad to be taken. If the extent of a characteristic
reach is chosen carefully and if that reach is long- compared to the major variations. in the system, then
effects arising from convective accelgrations associated with bed and bank topography in a small scale
model will show up as effective roughness in the large scale one. Although this simplifies the problem
immensely and makes global computations relatively simple, it also makes computation of the roughness
impossible without empirical input, or at least without the use of a large set of local models employed as
described in the previous paragraph, and it requires that the topography used in the model be accurately
averaged over the characteristic reaches.

Cross-sectionally averaged velocities calculated from information prc;cured during a topographic
investigation carried out at nearly steady discharges ranging from 25,500cfs (722m3/s) to 32,000cfs
(903m3/s) by Richard Wilson (Wilson, 1986), a dye study carried out by Julia Graf (Graf, 1992) at a
steady discharge of 15;000cfs (425m3/s), and the phase speed of a discharge wave that varied between
5,000cfs (142m3/s) and 15,000cfs (425m3/s) were used to set the roughness coefficient field as a
function of stage and downstream position in the version of our reach-averaged flow model presented in
this report. Only after appropriate topographic information for the river corridor becomes available will
reliable reach-averaged flow calculations for discharges above 30,000¢fs (850x1'13 /s) be possible or will
the calculations required to set the roughness coefficient field theoretically be feasible. In Q reach-
averaged model, the downstream gravitational force averaged over a lengthy streamwise segment of the
river is balanced against the frictional force on the wetted boundary of that segment of the river to
produce a reach-averaged boundary shear stress and a reach-averaged hydraulic radius. If the reache; are
chosen so that convective accelerations between them are small and the reach-averaged boundary shear
stress can be calculated with high accuracy from the reach-average slope times the hydraulic radius for
the reach times the specific weight of the fluid. For this calculation the hydraulic radius for the reach is

,,,,, -

defined as the volume of water in the reach divided by the wetted surface area in the reach.

Reach-Averaged Geometry of the Colorado River

10
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In the Colorado River both the cross-sectional area and the cross-sectional shape vary
significantly with downstream distance on the scale of a fraction of a river width; therefore, cross-
sections taken at spacings greater than this are of little value for deterministic analysis. At present, the
only moderately complete set of river channel cross-sections is the one procured by Wilson. It was this
data set with which Randall and Pemberton (1987) had to work when they produced the first numerical
models for flow and sediment transport in the Colorado River. Aware that Wilson's data set was by
itself insufficient for their one-dimensional algorithm, these authors tried to use a field of river widths to
expand it. Unfortunately, there is insufficient correlation between the width of this part of the Colorado
River, which is rela;ively easily measured from the air photographs taken at a stage of 5,000cfs
(142m3/s), and its cross-sectional area, because large changes in local depth, associated with past
geomorphic events, exert a greater local control on cross-sectional area than does river surface width. In
this report we, therefore, have chosen to take a stochastic approach, and to average the available
topographic data over zones of similar geometric characteristics. Although this does not minimize
convective accelerations as is often a goal of rg.ach-a'v;amging, the great lengths of our reaches force
inertial effects to be small.

Inside a given geologically defined zone of reasonable lateral extent, a reach-averaged cross-
sectional area, a reach-averaged surface width, a reach-averaged depth, and a reach-averaged cross-
sectional shape can be constructed from the Wilson cross-sections for the stage at which the
measurements in that zone were made. Our reach-averaged cross-sectional shapes were obtained by

' scaling each individual profile with its surface width then averaging the scaled profiles in groups
associated with the chosen zones, Each reach-averaged cross-sectional shape was then rescaled, by the
appropriate mean surface width for the stage at which the set of measurements was made, and the banks
were extrapolated linearly to higher elevations. There is no apparent reason for the river, on the average
over a reach tens of kilometers in extent, to bave an asymmetrical cross-section; therefore, to provide a
larger population of cross-sections for the statistical analysis we forced the channel to be symmetrical by

averaging the left and right halves of the profiles. In addition to feach-averaged values, standard

11
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deviations of surface width, cross-sectional area, mean depth, and cross-sectional shape also were
calculated.

To aid in delineating characteristic reaches, the Wilson data set was filtered with a fifteen point
running mean. The filtered data set has the advantage of providing a continuous distribution of key
geometric properties from Lees Ferry to Diamond Creek, but it suffers from the fact that the
morphologic characteristics of the river channel vary primarily with canyon-bottom bedrock geology and
that changes from one geologically controlled zone to the next are more abrupt than the length scale of
the fiiter that had to be used to get an acceptably smooth result. The fifteen point filtered channel
properties are displayed in Figures 2 and 3. The solid line in Figure 2 displays mean surface width and
the dashed line displays the running standard deviation of surface width from the fifteen point anélysis,
as a function of distance down river from Lees Ferry.A Similarly, Figure 3 shows the rumﬁng mean Cross-
sectional area and its standard deviation as a function of River Mile, the solid line displaying the former
and the dashed line representing the latter. From each local width and local cross-sectional area, a cross-
sectionally averaged depth also can be calculated. These resuits then can be filtered to yield a running
mean depth. In both of these two figures, a blocky ét;ucmre to the running means is clearly evident;
moreover, by comparing these graphs to the Colorado River in Grand Canvon Guide (Stevens, 1983), it
becomes clear that each of the zones of approximately constant value corresponds with a zone of
characteristic geology. We tﬁerefore have defined the set of characteristic reaches using Figures 2 and 3,
in terms of riverbed geology and channel geometry. The full set of reaches that we have chosen to use is
delineated in Table I. This group is similar to the eleven morphologic zones defined in an analogous
manner by Graf and Schmidt (1990) and some of our reaches are essentially the same as theirs, but others
differ because of our greater reliance on filtered profiles. These ten divisions of the River between Lees
Ferry and Diamond Creek will be denoted morphologically similar reaches, thereby indicating the
dominant criteria by which they were defined.

‘ After segmenting the river as described above and as displayed in Table I, block means and
standard deviations were computed for each of the segments. Figures 4, 5, and 6 compare the block

averaged values of surface width, cross-sectional area, and flow depth respectively for all of the

12
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morphologically similar reaches to the fifteen point running means of these variables. Also shown in
Figures 4, 5, and 6 are the block averaged values of the variables plus and minus one standard deviation.
The dashed line in Figure 7 shows the block averaged cross-sectiona;l shape for the entire.set of profiles,
and the solid line in this figure indicates the block averaged cross-sectional shape for the entire channel
assuming that it must be symmetrical. The dotted lines in Figure 7 give the symmetrical shape plus an<
minus one standard deviation. A full set of cross-sectional shape;s for the ten morphologically similar
reaches is included as Appendix I, while some of the more interesting cross-sections are displayed in
combination in Figures 8 through 11.

Figure 8 coriipares the cross-sectional shapes for three reaches in which there is limestone and
massive, calcareously cemented sandstone (RM 0-11) or just limestone (RM 23-50, RM 140-1g9) at river
level and shows that there is no significant difference between these reaches. Consequently the profiles
from all three locations were combined. Similarly, Figure 9 compares the cross-sectional shape of the
River as it cuts through the Supai Group with that for the Inner Granite Gorge where the Zoroaster
Granite and Vishnu Schist are at river level. These profiles similarly do not differ appreciably and,
therefore, have been combined. In contrast, Figure! 1.‘0 displays the block averaged cross-sectional shapes
for the river channel as it cuﬁs through Tapeats Sandstone and Bright Angel Shale between Nankoweap
Creek (RM 52) and Lava Canyon (RM 65) as compared to where it cuts through the same Cambrian
rocks between Fern Glen Canyon (RM 168) and Whitmore Wash (RM 188). The upstream reach is
represented by the upper profile and the downstream one is represented by the next one down in the
figure. The difference between these two shapes represents sand and gravel in the reaches below
Nankoweap Creek (RM 52) and near the mouth of the Little Coloradoe River (RM 61), the origin of
which is discussed in the section of this report on sediment transport. Although most of the downstream
section was once filled with Pleistocene Lavg, the presence then removal of this volcanic material clearly
has not bad a significant effect on the channel cross-sectional geometry. Also shown in Figure 10 is the
profile for the channel cut through Vishnu Schist between Whitmore Wash (RM 188) and Diamond
Creek (RM 225), where the River is much narrower and deeper. The block averaged cross-sectional

profiles for the reaches that were discussed and grouped previously in this paragraph are contrasted in

13
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Figure 11 to demonstrate the substantial differences between the river channels throixgh Cambrian clastic
sedimentary rocks (shallowest), limestone (next shallowest), PreCambrian sedimentary rocks and schist
(next deepest), and Zoroaster Granite and Supai Group (deepest). It is useful to examine the statistics for
each of these reaches, as given in Table I, in conjunction with the cross-section displayed in Figure 11.
Using as measures of resolutgon both the standard deviations for the chosen blocks of data and
the differences between the left and ﬁght halves of the channel in each block as given in Appendix I, the
set of cross-sections was compacted. As might be expected, the sub-groups that were combined come
from reaches with similar geologic characteristics, especially in regard to the response of the rocks
bounding the river channel to impacts. The only possible surprises are that the sandy beds of the Supai
Group react similarly to the Zoroaster Granite - Vishnu Schist of the Upper Granite Gorge, and that the
Pleistocene lava in the lower canyon seems to have had little effect on river geomorphology. The most
common characteristic morphology is that for the zones in which lix;:estone and calcareously cemented,
eolian sandstone are at river level, namely River Miles 0.8 to 5.5 where the Kaibab and Toroweap
limestones and the Coconino Sandstone are at river level, River Miles 23.2 to 48.8 in which the Redwall
and then the Muav limestones are at river leve!, and reach 139.7 to 169.1 in which Redwall and Muav
(primarily the latter) are again at river level. Although a quantitative analysis of the processes producing
these characteristic morphologies is not the goal of the present report, it is clear that there is a straight
forward correspondence behh;een the consequences of incision, the bedrock type at river level, the flow,

and the geometry of the river channel.

Reach-Averaged Flow Properties at Stages of IS,WS (425m3/s) and Above

Now that cross-sections have been constructed for each of the morphologically defined reaches
of the Colorado Ri;rer in the Marble and Grand Canyons, this information can be combined with reach-
averaged river slope and reach-averaged velocity data to produce reach-averaged boundary shear stresses,
reach-averaged bed roughness, and tables that permit computation of shear velocity, cross-sectionally
averaged velocity, and discharge as functions of stage. Four dye studies were planned in order to

determine reach-averaged velocity fields, but only two of these bave been carried out to date; moreover,
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only one of these two was undertaken during an extended period of steady flow. Tﬁis was accomplished
during Research Flow E in late May, 1991, when the disﬁharge was 15,000cfs (425m3/s). Data from
this dye study are used in this section to determine reach-average velocities and then roughnesses for each
of the ten morphologically similar reaches. Dye concentration measurements were not obtained at cr
near the boundaries of the reaches defined by our channel geometry analysis because of logistical
constraints. Nevertheless, the dye velocity varied surprisingly little with downstream distance in this
experiment (Graf, 1992), and it is easy to interpolate the measured velocities of the dye cloud peak to get |
accurate estimates of cross-sectionally averaged vel;)city, namely the velocity to which the dye cloud peak
most closely responds, for each of the morphologically similar reaches. All measurements of the velocity
of the dye cloud peak for };\esearch Flow E are within five per cent of one meter per second.

Using the geometric properties of each morphologically similar reach to determine its hydraulic
radius as a function of flow deplhv, and using the reach-averaged slope in combination with this hydraulic
radius to obtain reach-averaged boundary shear stress and shear velocity, allows corhputation of the
effective roughnesses of each of these reaches at a discharge of 15,000cfs (425m3/s). None of the
methods by which channel bed friction normally is pi;ameterized is appropriate for a river of such high
relative roughness. Only a method, in which the form drag on each of the common geometric elements
of the channel bed is computed and then summed, can yield a satisfactory velocity field and hence an
accurate relationship between cross-sect'ionally averaged velocity and shear velocity, permitting
computation of bed friction, as a function of stage for each morphologically similar reach. This could be
done by applying a modified version of the method of Wiberg and Smith (1991} to a statistical
representation of the channel bed were the appropriate topographic information available, and this will be
done when the required information is obtained. In the meantime, a2 more empirical method must be
employed. To do this we shall assume that the reach-averaged velocit)" field is estimated at any point in
the cross-section by expressions that apply to steady, horizontally uniform open channel flows of low

relative roughness, namely

u= Y |, = 24 2,=0.20h (@9
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where ux =(be / P) is the shear velocity, ’ZL is the boundary shear stress, (3 is the density of the fluid, z

is the distance above the riverbed, h is the depth of the flow at the location of interest, k = 0.408 is

VonKarman's constant, z is a parameter that characterizes the effective roughness of the flow below and

upstream of the location of interest, and =6.24 is a parameter. This velocity profile assumes an eddy
p |2 |%

viscosity of K = kuz(1-z/h) below 0.20h and K = kuah/ \6 above this level. Integrating the velocity

profile represented by (1) over the flow depth yields

qb=<u>\q:“_\z(\u. _\%_ -—o.:m)k @

where q is the discharge per unit width at the location of interest and <u> is the vertically averaged

velocity at that location. b

In actuality, lateral stresses should be taken into account, and the eddy diffusivity for momentum
should be derived in terms of distance from the bed along rays that are nor:aal to the isovel field and that
intersect the channel boundary perpendicularly. For broad shallow chann;als, bowever, the error
introduced by computing the appropriate integrals along vertical lines rather than along these difficuit to
calculate rays is small except near the banks and (2) can be employed as a reasonable approximation. In
the Colorado River, a much greater error than that produced by neglecting lateral stresses in (2) is
incurred by the use of (1) or its integral (2) instead of calculating a velocity field with an appropriate
Nmodiﬁcation of the method of Wiberg and Smith. Equation (2), or its numerical equivalent if a more
general local flow algorithm is employed (eg. that of Wiberg and Smith), must be integrated across the
channel to get discharge from the discharge per u;:.it width which is given by (2). This must be done
numerically, because of the dependence of the shear velocity and the logarithmic termv‘on locQ flow

depth. The cross-stream integrated version of (2), however, can be written in the form:
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where Ux is based on the hydraulic radius R of the characteristic reach rather than the local flow depth,

(z)av is the depth weighted average value of the roughness parameter, and ay, is a coefficient that makes

this analytic expression equal to the numerical result. In (3), b represents the surface width of the flow,

h,y denotes average depth, and U denotes the cross-sectionaily averaged velocity. Also we define a

friction coetficient B by

=L (\,‘ (a, éQ - o.?%) @

N

Often ay, is included in the value of zj, and we shall follow that procedure here. From the reach-
averaged values of the cross-sectionally averaged velocity obtained with the dye study, we can now
compute values of B and 7 at a discharge of 15,000cfs (425m3/s). These values are given in Table III.
Also, values of U, hence B and zg, can be calculated for the discharges at which the cross-
sections were obtained by Wilson. Typically the profiles within a given morphologically similar reach
were procured at 2 more or less constant discha;ge, so a reasonably accurate cross-sectionally averaged
velocity can be calculated for each of these reaches. These velocities are given in Table I along with
the calculated values of B and z  This procedure demonstrates that z increases with stage, therefore, zg
and B also have to be evaiuated at other discharges, especially one around 5,000cfs (142m3/s).
Unforrunatély no dye or topographic information with which to do this is available, and next to the
construction of a detailed topographic map of the river corridor, procurement of cross-sectionally
averaged velocity data from a dye study at a discharge of 5,000cfs (142m3/s) is of the highest priority.

In the absence of flow velocity information, a travel time versus distance curve for one of the Research

Flow discharge waves had to be used.
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Up to this point the mean geometric properties of the river channel and the éuasi-steady response
of the flow system have been examined. Only topograpbié profiles and reach-averaged velocity data have
been used to do this. To improve on these quasi-steady flow results additional reach-averaged velocity
information at lower and higher discharges relative to 15,000cfs (425m3/s) and much better topographic
information for the rivgrbed and the river banks from the 25,000cfs (708m3/s) to the 100,000cfs
(2,830m3/s) levels are required. Currently accurate calculations are not possible for discharges above
25,000cfs (708m3/s) 1n most of the upstream reaches and above 32,000cfs (906m3/s) in the lower ones

because the available cross-sections do not extend above these levels.

B Determination of the Friction Coefficient for Low Discharges

Not 'only did the values of the friction coefficient vary between the two high flow cases for
which it was set, but also all of the calculations of discharge wave speed based on stage independent
friction parameters or extrapolated stage-dependent values led to underestimates of the wave speed during
the research flows for which we had accurate data from the temporary stage gage network. Our
calculations all indicated that the bed of the river becomes effectively smoother as the stage drops, and
demonstrated that this effect had to be taken into account if suitable routing algorithms were to be
constructed. The friction parameters determined above for each of the morphologically similar reaches
were for di;charges at or close to the peak values of both the 5,000cfs (142m3/s) to 15,000cfs (425m3/s)
and the 3,000cfs (85m3/s) to 26,000cfs (736m3/s) research flows (B and D respectively); therefore, the
phase speeds for these research flows or resuits from the unsteady dye study could, in principal, be used
to determine the low stage friction parameters for each of the morphologically similar reaches. The dye
study, however, was carried out at sucﬁ a highly variable discharge [3,000cfs (85m3/s) to 26,000cfs
(736m3/s) at the Dam] that the stage (and discharge) of the trough increased substantially with
downstream distance, making the velocity data for this research flow very difficuit to use for
determination of a low flow friction parameter.

Mg to a more rapid rise in trough level stage with downstream distance for Research Flow D

than for Research Flow B, the trough discharges for both of these were about the same in the middle

18




“TVISIONAL DRAFT

<uizzt {o Revision
BO T G.UOTE OR RELEASE

Perding Approvel by Director
U.S. Geclogical Survey

third of the river segment between the Dam and Diamond Creek requiring the low §tage friction
parameter to be the same for both cases in this segment of the River. Preliminary calculations indicated
that the data being used to constrain the friction parameter were not accurate enough to Justify making a
distinction between the two trough discharge values in the upper and lower thirds of the River; therefore,
a single value was set for flows of discharges from 4,400cfs (125m3/s) to 5,400cfs (153m3/s) in the
upper River and from 5,500 (156m3/s) to 6,200cfs (176m3/s) in the lower river. This procedure led to a
reasonable characterization of friction for low discharge flows, but before the temporary stage gage
network is removed it is important that a comprehensive low stage dye study vbe carried out to set this
friction coefficient definitively. With only one low stage friction parameter to be determined and two
phase speeds to use for this purpose at each morphologically similar reach, a simple test of the flow
algorithm became possible. Consequently, the low stage friction coefficient was set using Research Flow
B so that all of the data from Research Flow D could be used to verify the algorithm. For the
preliminary model that is the focus of this report, the strongest confirmation of its validity is its ability to
reproduce the travel time trace of the discharge wave for the latter Research Flow. |

The wavelength of the discharge wave prodm:,ed during Research Flow B is approximately
170km and that for Research Flow D is nearly 240km. As a consequence, these waves respond to the
average geometry of not one but several morphologically similar reaches at a time, and in order to
compare measured and calculated phase speeds, a smaller set of average cross-sectioﬁs, each containing
more of the individually measured cross-sections, had to be constructed. The locations and average
properties of these longer reaches are shown in Table IV. In addition, flow calculations for systems of
highly variable stage are quite sensitive to bank shape, and it is likely that not enough cross-sections were
available to characterize the bank shape as accurately as required in most of the morphologically similar
reaches listed in Table II. In any case, a reduction in the number of reaches used in flow calculation was
required in order to stabilize the calculations and produce consistent results. For the geometrically
defined reaches of Table IV, those upstream of River Mile ;40 were treated individually, but the long
reach downstream of River Mile 140 was broken into three segments in order to permit the stage and

discharge of the trough to adjust properly; therefore, there are five geometrically defined reaches, but
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seven hydraulically characterized reaches. The cross-sectional profiles for each of tilesc reaches are
shown in Figures 12 through 16. The format in these figures is the same as that for Figure 7.
Results of our flow model are presented in Table V for each of the seven hydrauljcally
cbaracterized reaches, and for the entire Lees Ferry to Diamond Creek segment of the River. Using this
table all of the important hydraulic parameters can be estimated at any or all of these. eight segments for
any steady discharge below 35,000cfs (846m3/s) at the Glen Canyon Dam. Moreover, even the most
extreme diurnal variations in discharge are predominantly quasi steady in their primary reach-average
characterist‘ics, and the information presented in this table also is necessary for computation of the salient
properties of the daily discharge waves. The salient morphologic and flow properties also are displayed
graphically in Figures 17, 18 and 19 for the entire Lees Ferry to Diamond Creck segment of the River.
The results of this preliminary model, as displayed in Table V, are not likely to change
drastically but may change somewhat as the inputs to it are improved and as the model is carefully
compared to measurements currently being made with the temporary stage gage network. Moreover, the
accuracy, reliability, and generality of the model will increase immensely after additional dye studies are
carried out, and when accurate topographic data for t'h‘e riparian corridor of the entire River are made
available. Nevertheless, the model as it now stands; (1) demonstrates the feasibility of making the type
of flow and, consequently, sediment transport calculations required for relating discharge at the Dam to
_ both clear and subtle downstream effects, thereby enabling sensitive and insightful management of the
riparian environment of the Colorado River in the Marble and Grand Canyons, and (2) provides a badly
needed means with which researchers can connect detailed field studies of all types to the discharge
histories responsible for the physical, chemical and biological phenomena being investigated, and thereby
enabling them to relate properly their findings to the operational history of the Glen Canyon Dam. As
mentioned above, the present model cannot be used reliably for discharges in excess of 25,500cfs
(708m3/s) in the upper river and 32,000cfs (906ui3/s) in the lower river, because the topographic cross-
sections did not extend above these levels and there is essentially no topographic information with which

to calculate reach-averaged geometric properties above these levels.
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Mechanics of the Discharge Wave
Next it is desirable to examine the unsteady response of the system and for this some theoretical
background is necessary. The continuity equation for incompressible flow is

2 Dwr

\
o + =0 5)

DK Y DT

where u is the velocity component in the downstream (x) direction, v is the velocity component in the
cross-stream direction, and w is the velocity component in the near vertical (z) direction (that is,

perpendicular to the average channel slope). Integrating this equation with respect to z yields

Y g _ _"oh (6)
}xw)L\ +7_>(_3(N->\4 = %’?

where <u> is the velocity component in the downstream direction averaged over the flow depth at any
point in the river, <v> is the cross-stream velocity component averaged over the flow depth at that

point, and h is the depth at that point. Integrating (6Y in the cross-stream direction gives

b/ bl |
2 (hdy) = '% hely . ™ x
~bly ~b/y
That is |
(7b)
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where A is the cross-sectional area of the flow and Q is the discharge.
IfweletQ =Qqg + QAf(e) and A=Ag+ A Af(e) where Qg represents the discharge of the

steady flow at the trough, sometimes called the base flow, and Ay is the cross-sectional area of this flow
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at the site of interest, QAis the difference between the maximum and minimum discharges of the
discharge wave, and A Ais the change in cross-sectional area corresponaing to the change in discharge.
The function f(e) represents the shape of the wave and @ ot x ~ ot where (= zjr/ ~ is
the wave number, ¢J = 2 T/T is the angular frequency,> is the length of the wave, T is its period, and
C= %/ T =W/ isits phase speed. Substituting the expressions for Q , and A , into (7b) and

solving for C gives

Q= P _ QP—Qo
Q" QP-(‘\"

®)

where Qp is the peak discharge and Ap is the cross-sectional area of the peak flow. Alternately we can

write A = bh and Q = Ubh where U = UxB and Ux = (U*)p(h/hp)l/z substitute into (7b) to find

U EAN N2 MLEJ
SRR ST Al

(bxui))

where the primes denote differentiation with respect fo h and the variables subscripted with p denote
evaluation at the peak discharge. Equations (8) and (9) both require the wave to remain constant in shape
and height, but they also represent first approximations for waves that are changing shape slowly.

Equation (9) shows that the discharge wave will deform at least as (h/hp)” 2 asiit propagates, becoming

more asymmetrical with distance dewnstream from its origin.

Measured Properties of the Discharge Wave

The temporary stage gage network produces immensely valuable information with regard to the
properties of the discharge waves as they propagate from the Glen Canyon Dam to Lake Mead. In this
report, however, only the segment bet\\;een the Dam and Diamond Creek has been investigated in detail
because there is no topographic information for the reaches beyond River Mile 225.- The amplitudes of

the discharge waves vary locally in response to the ever-changing cross-section of the River, but the
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wave shape at a given site is more robust. Stage is measured at specific sites so eacﬁ stage-discharge
curve depends on the cross-sectional area at the location of the gage. Moreover, in order to prevent
contamination of the data by surface waves, sites typical were selected in pools upstream of rapids,
biasing the data set toward wider reaches. Nevertheless, the general trend in discharge wave height with
downstream distance for two research flows can be seen clearly in Figure 20. Between the Dam and
Furnace Flats the waveheight decreases as the peak moves from the narrow gorge in limestone and well
Py indurated sandstone to the wide sections through the soft Cambrian and PreCambrian sedimentary rocks.
The wave height then increases as the wave propagates through the Upper Granite Gorge, and it remains
more or Jess constant until the wave enters the wice reaches downstream of Fern Glen Canyon. Eoth of
the curves Arepresenting amplitude as a function of downstream distance display the same structure. The
differences are due to environmentally and instrumentally induced drift, and comparison of normalized
versions of the two curves provides a good estimate of the precision of the network. Pressure transducers
lyiné on a sandy bed can scour or be partially covered by the fine sediment, whereas pressure transducers
lying on bedrock sometimes get moved into deeper water by the flow. These events are made evident by
changes in the field calibration of the instrument, but ;he data in Figure 20 have not yet been corrected
for changes in instrument depth or for the cross-sectional profile at the measurement site as compared to
that for the morphologically similar reach in which the measurement site is located. The higher curve in
this figure represents the height of the discharge wave during the 3,000cfs (85m3/s) to 26,000cfs
(736m3/s) research flow in late May, 1991, and the lower curve represents the height of the discharge
wave during Research Flow B in February, 1991. Using Table II one can see the general correspondence
between wave height and the reach-averaged georﬁetric properties of the river corridor.
Of particular interest in this report are the shapes of the discharge waves for these February and
May research flows. Owing to the initial sparse sampling of the discharge waves by the data recorders,
seven of the eight cycles of each research flow were combined. The variance for this procedure was very
small, especially when the first wave \;/as omitted from the analysis; the;'efore, the approach provided a
very accurate composite wave shape. Each research flow was proceeded by several days of steady

5,000cfs (142m3/s) discharge, and typically this had a lower stage than the trough of the 5,000cfs
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(142m3/s) to 15,000cfs (425m3/s) discharge wave at the Dam, that is, the trough disﬁ’nargc increased
with downstream location. Consequently the first wave of each research flow sequence had to
accommodate this effect, and was a slightly different shape. For the same reason, it also had a slightly
iower peak discharge. The mean wave shape for each of the temporary stage gage sites was normalized
by its height. These normalized wave shapes were then averaged for all of the sites in each
morphologically similar reach. A sequence of three such waves is plotted in Figure 21 for Research
Flow B. In this figure the dashed line represents the shape of the wave just downstream from Lees
Ferry, the dashed line with double dots represents the shape of the same wave in the vicinity of Phantom
Ranch, and the dotted line represents the shape of this discharge wave just upstream of Diamond Creek.
Two very important features of the discharge wave field can be observed immediately from this sequence
of curves. First, the wave has a much broader top just downstream of the Dam than it does in the Upper
Granite Gorge, and its top is broader in the Upper Granite Gorge than it is upstream of Diamond Creek;
that is, the duration of the high velocity flow decreases with do%stmm distance in the discharge wave,
reducing both the amount of water and the amount of sediment that can be carried by the wave form.
Second, the wave becomes substantially more asymnf(;iﬁcal with downstream distance, the leading edge
growing ever steeper, and the trailing edge becoming less steep. The latter is a consequence of both
reduction in the duration of the peak flow and the tendency for the wave phase speed to be greater at

| higher stages as indicated by (9).

A complete sequence of discharge wave shapes is shown in Figure 22 for the morpbologically
similar reaches between Lees Ferry and Phantom Ranch. Note that the trends of peak flow duration
reduction and increasing leading edge steepness of the discharge wave are monotonic. Figure 23 is
analogous to Figure 21, but for Research Flow D. The wave shapes for Research Flows B and D are
essentially the same in the reach just downstream of Lees Ferry, but the higher wave of Research Flow D
transforms even more quickly than that of Research Flow B. This also is clear from Figure 24, which
shows the shapes of the discharge waves in the morphologically similar reaches between Lees Ferry and
Phantom Ranch. Here one can again see the monotonic trends in reduction of peak discharge duration

and leading edge steepening and can note by the greater dispersion of the lines in the upper left-band
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corner of Figure 24 relative to those in the same area on Figure 22, the more rapid transformation of the
higher amplitude discharge wave. This also can be seen by comparing the solid and dashed lines in
Figure 25, the former being for Research Flow B and the latter being for Research Flow 0. Note
particularly the very steep leading edge and sharp, almost triangular, crests and troughs for the higher
amplitude discharge wave.

As can be seen by visual inspection of any of these figures, all other things being equal, the
change in shape of the discharge wave reduces the area under it: Therefore, in order to conserve mass
the trough discharge must rise. Also the trailing edge of the first wave extends an ever increasing
distance under the wave following it, causing the trough leading the later wave to rise up the back of the
former wave. Position of the peak of the discharge wave relative to the preceding trough is displayed
graphically in Figure 26 for both research flows, the upper curve being for B and the lower one being for
D. Note that the transformation is greatest for the larger wave and in the upper half of the River for both
waves. Measured trough stage relative to the stage of the preceding 5,000cfs (142m3/s) steady flow is
shown in Figure 27 for these two research flows. The more rapid transformation of the higher discharge
wave produces a much more rapid rise in trough smg'é‘(trough discharge) with downstream distance; that
is, the dashed line in Figure 27, wh\ich is for Research Flow B, has a smaller upward slope than the
dashed line with double dots, which repr‘esents trough level stage for Research Flow D. The trough level
rises at about the same rate as the wave height decays, thus, when com&d for changes in cross-sectional
area, the stage of the peak stays about the same throughout the entire Marble and Grand Canyon
segments of the Colorado River. Water discharge varies approximately as the square of the stage, but
sediment transport varies with a much higher power of this variable. Much more sediment, therefore, is
transported by the peak flow than by lower discharges, and sediment transport rates are forced to reduce
with downstream distance as a consequence of this drastic change in wave shape.

Regardless of the shape of the wave released at the Dam, all discharge waves will evolve toward
a quasi triangular shape similar to those shown f;r the reach just upstream of Diamond Creek in Figure
27. Distortion of the shape of the discharge wave released at the Dam is greatest in the reach between

the Dam and the Little Colorado River; therefore, the nature of the flow and sediment transport in this
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reach can be controlled somewhat by the operation of the Dam. Production of a relatively square wave at
the Dam has the disadvantage of causing more erosion of the eddy beaches but the advantage of retaining
more sediment in the zone between the Paria and Little Colorado Rivers for the same average daily
sediment discharge. In contr;xst, were a symmetrical triangular wave produced at the Dam, the leading
edge would steepen and the trailing edge would flatten, but ti:e change in shape would not create a
substantial rise in trough discharge and it would ﬁot promote much deposition of sediment in the
upstream reaches of Marble Canyon. This type of wave probably would not significantly reduce the rate
of downramping in the downstream section of the River, and it might not change the upramping rate very
much below Phantom Runch. Thus it appears that the nature of the discharge wave produced at the Dam
has its greatest effect on the flow and sediment transport just downstream of the Dam. A]though :he
wave height decreases substantially between the Dam and Furnace Flats, as shown in F igure 20, the
trcagh stage rises and, in fact, the actual peak stage, as mentioned above, does not decrease substantially
in this reach or over the entire river segment.

One of the most easily and most accurately measured flow parameters, when a network of stage
gages is available, is wave travel time, from which w';ve phase speeds can be determined with high
accuracy. Wave travel time is an extremely sensitive parameter, and a mode] that aims to predict this
property must be very accurate at any given locality. Errors in roughness and channel cross-section
cause errors in flow velocity that often accumulate with downstream distance. Unfortunately stage
dependence of the roughness coefficient as discussed in a previous section of this report makes such
computations extremely difficult. In the case at hand, this difficulty was circumvented by using
discharge wave phase speed to calculate the low-stage roughness coefficient. Wave travel time as a
function of River Mile is shown for both Research Flows B and D in Figure 28. In addition, model
predictions are displayed by the dashed line and the dashed line with single dots in this figure. Only the

average properties can be compared between the measured and calculated travel times because of the
reach-averaged nature of the model, and it would be interesting to attempt to predict l;cal variations in
wave phase speed, but this must remain undone until detailed topographic information for more of the

river corridor becomes available. Examination of Figure 28 indicates that use of dye advection data in
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combination with the wave travel time curve for the 5,000cfs (142m3/s) to 15,000cfs (425m3/s) research
flow produces roughness coefficients that can be employea to predict the properties of the even more
extreme 3,000cfs (85m3/s) to 26,000cfs (736m3/s) research flow, indicating that our model can be used
with reasonable confidence for unsteady flows that range between about 5,000cfs (142m3/s) and
30,000cfs (850m3/s). Greater confidence at low discharges could be gained by completion of a dye
study at a discharge around 5,000cfs (142m3/s), anéi for discharges above about 30,000cfs (850m3/s)

little can be said with confidence until the topography of the riparian corridor has been mapped.

SEDIMENT TRANSPORT

Sediment transport in natural systems typically is complicated by important but difficult to
resolve variations in the near-bottom velo;:ity field induced by bed and bank topography. This certainly
is the case in the Colorado River between Lake Powell and Lake Mead. Moreover, until the riparian
corridor has been mapped properly, an accurate invcstigatiox; of the intricacies of sand transport in this
segment of the River will not be possible. Nevertheless, many important large scale patterns of erosion,
" transport and deposition can be deduced using the ﬂolv model that has been described previously in this
report, in conjunction with general geomorphic and sediment transport principles. If the micro- .
environments are more or less similar in each of the hydraulically characterized reaches, then the gross
patterns of erosivon_ and deposition in the river are controlled by the reach to reach variations in velocity
and boundary shear stress. As pointed out in the Introduction to this report, the morphology of the
Colorado River in the Marble and Grand Canyons is that of a gravel bedded fluvial system Although
sand lenses are the priuﬁuy focus of this report, they are transient and they rarely modify the
geomorphology of the system in any profound manner. Their main manifestation is as patches on the
bottom and along the sides of the channel. These patches have some effect on the near-bed flow typically
by making the bottom locally smoother, but they generally exist as a consequence of larger scale flow
patterns.

The general physical principle that governs erosion and deposition rates in sediment transporting

systems is conservation of mass, and it usually is applied in the form of the erosion eqhation:
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Here77 is the elevation of the bed, 07 / 3¢ is the rate of deposition, *Cy, is the concentration of sediment
in the bed, V is the volume of sediment per unit area of bed stored in a column of water above the
bottom, q is the sediment discharge per unit width. and \/ 'qs is the divergence of this local sediment
discharge. Equation (10) states that rate of deposition is proportional to the rate of loss of sediment from

storage in the water column (Ve /b{ ), and the rate of removal of sediment from that being transported
(Y 'qg). Inrivers, )'B-\Q/B{ ‘ is typically much less than \ V'qsi , hence (10) simplifies to:
~ ' i

5

ST ’(‘7 %) | o

Reach-averaging (11) yields

b s (12)

(“Ot N ‘Qb X

where (O, fot )av is the reach-averaged rate of deposition, Qg is the reach-averaged sediment

discharge, and x is the down-river direction. If the wetted surface of a reach were entirely covered with

sand then Qg would depend monotonically on the reach-averaged boundary shear stress, and the chain

rule could be used to-write

7}_’15 = -1 0@, 04 (13)

Dt/ay DT, VX

Equations (12) and (13) clearly demonstrate that erosion and deposition are related to downstream

changes in sediment ciischarge which are related, in turn, to downstream changes in flow properties.
From (13) it is clear that in a sand bedded river for which the entire perimeter of the channel is

mobile, the dominant geomorphic adjustment to changing boundary shear stress is an adjustment of
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channel cross-section until the boundary shear stress becomes constant in the streamwise direction. In
contrast, for a system in win'ch sand is distributed in patches over gravel, it is the sediment transport rate
and not the boundary shear stress that is adjusted. This is accomplished by changing the area of the river
bed covered by sand. On a reach-average scale, suspended sand transport is supported by the presence of
sand on the bed. Suspended load trahsport results from the upward diffusion and downstream advection
of sediment and, therefore, it requires the highest conwntﬁtion of suspended maternial to be in the
immediate vicinity of the bed. This can only be the case if the gravel bed is locally covered with sand.
When there is a decrease in sediment flux, deposition expands the area of the bed covered by sand and
thereby increases the efflux of matenial from the depositional site until the sediment discharge becomes
constant. This happens quite quickly at high transport rates but very slowly at low transport rates . »
because in the latter situation the sand transport is confined primarily to the sand bedded part of the
channel. The rate at which this adjustment occurs when the bed is being eroded also depends on the
sediment discharge (namely the rate at which material can be removed), but it also depends on the
thickness of the sand deposit on the riverbed (namely the amount that must be eroded). It is this type of
adjustment that occurs in the Marble and Grand Canyon segments of the Colorado River.
Equilibrium suspended sand transpor; also can be computed locally for systems in which the

material of interest only partially covers the bed. To do this the bed is first assumed to be floored by a
thin layer of sand. In regions of local boundary shear stress divergence (erosion) this layer is soon
removed, whereas in areas of‘boundary shear stress convergence (deposition) it becomes thicker. For an
equilibrium system this approach soon evolves sand patchw‘that are the appropnate sizes and are m the
appropriate locations for the imposed flow conditions. In ;Jatural systems patch structure is often quite
complex, and it usually is very difficult with field methods to determine patch locations and patch areas
with the accuracy required for usable sediment transport calculations. Therefore, application of this
computational approach often is necessary. An appropriate upstream source must be inciuded in all
| equilibrium calculations. Thxs might be an eroding patch of sand at the mouth of a tributary, a ~
distributed flux from a patchy source or a cross-sectionally averaged flux. Moreover, the input flux

might be adjusted to satisfy a measured downstream sediment discharge, as will be done subsequently in
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this section. Any increase in the imposed sediment flux will produce deposition in the reach until the
influx and efflux are the sa?nc and the patch sizes will adjust accordingly. A decrease in it will produce
erosion until equilibrium is again attained. Sediment transport varies nonlinearly with boundary shear
stress and, therefore, suspended sand fluxes are strongly wgighwd toward periods of high flow. By
calculating the sediment transport mé that would occur in the deepest half of a given channel as a
function of time for a complicated hydrograph and then calculating the stage that would produce the same
average flux, an effective sediment vtransport'mg stage can be estimated for any system with a
complicated, time dependent hydrograph. This is best done with a global model, but once this effective
stage has been determined, patches can be produced where a determinisfic 01; stochastic representation of
the bed topography will place them using a local model. After an appropriate upstream source has been
added, such that the patches grow or shrink until an equilibrium pattern is produced, transient
calculations can be carried out to determine vanations around this long term equilibrium state.

Sediment transport in topographically complex systems, such as the.Colomdo River, is
extremely sensitive to variations in flow and bed topography, and these must be modeled accurately
either with a fully deterministic or partly deterministic and partly stochastic model. Smail scale
roughness is almost always treated stochastically, but larger scale flow patterns often need to be
calculated with a multi-dimensional flow algorithm such as the quasi three-dimensional one of Smith and
McLean (1984; see also Nelson and Smith 1987). If the bed is coarse and poorly sorted the method of
Wiberg and Smith (1991) can be used to good advantage. Moreover, in complicated reaches where the
bed roughness is composed of gravel, but sand is moving over it, the method of Wiberg and Smith can
and should be combined‘with the quasi three-dimensional model of Smith and McLean. Use of the
appropriate topograpixy for the gravel bed underlying the sand layer permits the drag on protruding
roughness elements to be determined so that the near-bed momentum defect can be calculated and the
flow in the immediate vicinity of the bed estimated with the accuracy required for proper sediment
transport calculations. When investigating longer reaches and segments such as in the present case, a
stochastic treatment of channe] geometry as well as bed topography, is the most effective approach and

that is the procedure that ultimately needs to be taken with regarc to sand transport calculations in the
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Marble and Grangd Canyon reaches of the Colorado River, ‘Unfonunately, this cannot be dope at present
because the required topographic information has not yet been obtained. Although the toois to carry out
accurate sediment t‘ransport calculations are available, and the peed for such calculationg Is acute, we do
Dot yet have the basje information to use these powerful methods, Therefore, agimpler and somewhat
less accurate approach will be taken in this report,

To avoid the need to know the near-bed velocity field accurately, we shalj assume that the sand
patches are of moderate lateral extent and thag they are connected in the streamwise direction in 2 manger

such that the high relative roughness acts to produce low cross-sectionally averaged and interjor

by

(14)

(15)
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Rubin ({489 ) to calculate the appropriate z) for the sand patch. This Jocal value of zj for flow over a
geometrically smooth sand4patch will be denoted (zg)g.

Once the shear stress on the surface of the sand patch is known, the sand concentration Cyata

precisely prescribed distance (z,) from the riverbed can be calculated using an equation first suggested by

Smith and McLean (1977) and later modified by Wiberg and Smith (in preparation), namely

(16a)

£. = 6.0045 é’b(% 1)

2.= Sn . . (16b)

In (16), TC is the critical shear stress for the initiation of sediment motion as given by the Shields

diagram (or the initial motion theory of Wiberg and Smith,- 1987), €}, is the concentration of sediment in

the bed, and Sy is the height to which sediment grains of the size and physical properties of interest

would hop if they were in the saitation motion field. "Grains being transported in suspension are lifted off
a sedimént bed by the same forces that produce saltation, and as they rise from the bed they are subjected
to small scale pressure gradients resulting from the turbulent flow. If the forces on the grains from the
turbulent fluctuations are small relative to the grain weight then the particles will saltate, but if these
forces are large relative to the grain weight then some of the grains will be piucked from their trajectories
and carried upward and into suspension. A substantial fraction of the flight time of a saltating grain is
spent near the top of it trajectory, making this the most probable distance above the riverbed from which
non-cohesive sediment grains will be carried into suspension. The height SBAdepends on the
dimensionless bomdaﬁ shear stress (Shields stress, G = 'Q,}(?‘-e)gp, where(es-c)s is the specific
weight of the submerged grain) and the grain diameter (D), and it can be calculated using Figure 29.

The coefficient in (16a) has been determined from thé field data of Smith and McLean (1977a), from the

laboratory measurements of Guy and others ( {3¢¢ ) and from the saitation theory of Wiberg and

Smith (198 , so it can be used with considerable confidence.
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Above the sediment bed modern suspended sediment transport theory can be employed (see
Smith, 1977; Smith and M.cLean 1977a and 1977b, and Gelfenbaum and Smith, 1986). Using (1) and
the diffusion coefficients for momentum that go with these velocity profiles, in conjunction with (16),
and an appropriate setting velocity for the material in transit, suspended sand concentration profiles can
be calculated, multiplied by the app.ropriate velocity profile and then integrated over the flow depth to get

suspended sand discharge per unit width over the deepest part of the channel. This concentration profile

is

. -Qa_ Za | — 2/4 3>\%
PSP Y

\-¢€s YN LT 2‘/5 24 2y (172)

s _ La ;'(z_&\(t-ﬁ/h

i 1= Za /% »1"(’ & FQ{’) ‘(‘%\» (17b)

-e, -2 Zy|
: Z 27y,

where zy, = 0.20b;/ps = wslk(u-u)s is the Rouse number, +# is the setting velocity for the sediment,

and (u«)g is the value of ux calculated from (15).

In the relatively crude suspended sand transport model presented in this report we have
calculated the suspended sand flux per unit width, as described above, only for the deepest part of the
channel, and then we muitiplied this value by the fraction of the perimeter of the channel covered by
sand, rather than calculati;zg the unit suspended sand discharge as a function of local depth and
integrating this result in the cross-channel direction numerically. Such a procedure does not produce a
particularly large error because only a small fraction of the wetted perimeter of the narrow
morphologically similar reaches is covered by sand, and in the broader, shallower reaches the flow depth
does not vary significantly in the cross-stream direction. Until better tcpographic information is
available a more sophisticated approach probably is not warranted. Moreover, the procedure used here |

yields a simple, convenient relationship between sediment discharge and fraction of the bed covered by

sand.
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Suspended sand fluxes increase very rapidiy with stage. This is displayﬁd in Figures 30 and 31
for Research Flows B and D respectively. In these figures the shapes of the stage, water discharge, and
sediment discharge curves are compared. For Research Flow B the stage and water discharge curves
have about the same shape, but the sedimént discharge curve is much more peaked. This means that the
daily average sediment discharge is much higher for a normal peak power producing flow than it is for a
steady flow of the same average water discharge. Figure 31 for Research Flow D displays a greater
deviation in the shape of the discharge wave relative to the stage wave and a much more sharply peaked
sediment discharge curve, hence, an even higher daily suspended sand discharge for approximately the
same average water discharge. In fact, for Research Flow D almost ali of the suspended sand trans;zort
occurs within 10% of the peak stage. This means that there is a substantial convergence in sediment
transport rate as a function of distance downstream from the Dam under normal peak power production
conditions, and this wave-transformation-forcedconvergence in suspended sand transport causes more
deposition of sediment in the upstream most part of Marble Canyon than would be the case under -
condition of steady suspended sand transport at the same daily average sediment discharge. This also is
the case for the same daily water discharge as !ong a8 there is excess sand in the bar at thé mouth of the
Paria River, but the high sediment transport rates associated with high stage peak power production
obviously will deplete this source more rapidly than would be the case at lower peak and steady flow
stages. A persistent discharge scenario of this type will cause the sand patches on the bed of the niver to
increase in area, but this in turn will make the reach more suscleptible to erosion by transient events of
very high stage.

If the riverbed were in equilibrium with the sediment fluxes given by the Grand Canyon -
(Phantom Ranch) r';ning curve during Research Flows B and D then 19% and 12% of the bed of the
morphologicaily similar reach in which that gage is located would be covered by sand respectively. If
the same percentages of the bed were covered in every hydraulically characterized reach, then the
suspended sand discharges for these research flows would be as shown in Figure 33, and if the system
were operated in this mode long enough for the sediment discharges to become the same from reach to

reach, then the fractions of the beds in each of the hydraulically characterized reaches covered by sand
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would be as given in Figure 34. In reality the system is never in equilibrium, but the area of channel bed
covered by sand probably varies between these two states depending. on the recent operational history of
the Dam. The thicknesses of the sand patches control only their rates of decreases in size, and it is very
unlikely that there is sufficient sand in the system for it to remain out of equilibrium for r;ore than a
decade or so. Furthermore, erosion of thick sand patches on the bed of the river cannot enhance local
sand fluxes by enough to have a significant long-term impact on the eddy beaches. These eddy deposits
are approximately in equilibrium with the sand deposits on the bed of the channel. Eventually the
suspended sand transport rates measured at the National Canyon Cableway will be used to determine the
fraction of sand on the bed of the 140 to 169 hydraulically characterized reach. Once this has been done,
ibe reach just upstream of the Grand Cam or gage can be mapped so that ltie Grand Canyon gage site can
be properly calibrated, as was done with the National Canyon gage sige in 1991, Then results from the
Grand Canyon gage can be compared to those of the model to determine exactly how far out of

equilibrium the sediment transport system in the lower canyon has been operating and how closely

the Grand Canyon suspended sand rating curve represents equilibrium sand transport conditions in the

Canyon.

SUMMARY AND CONCLUSIONS

This report presents a careful analysis of field measurements made specifically for the purpose of
understanding flow and sediment transport in the Colorado River between Lake Poweil and Lake Mead,
along with simple, but z;ccurate algorithms for computatio;x of reach-averaged flow and sediment
transport under the range of environmental conditions represented by the data. It focuses on that segment
of this river and those stages for which topographic information is >available. The approach is general,
but the necessary input information is limited. When this additional information becomes available, the
models will be expanded to cover the reaches below Diamond Creek and stages near and above power
plant capacity including those attained during the mid-1980s and in pre-dam times. The present model is
not strictly valid for discharges above 26,000cfs (736m3/s) in the upper River and for discharges above

32,000cfs (907m>/s) in the lower River, but it probably can be extrapolated with some confidence to
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present peak-power-production-capacity of the Dam. Dam managers certainly would be remiss,

however, in not procuring the information required for extending the models to all pre- and post-dam
flows that have affected and will affect the river corridor. Until accurate calqulations have been carried
out for the flow and sediment transport conditions of the mid-1980's, postulated consequences of these
high discharge conditions must be cdnsidered speculative. The topographic data required to extend the
models to these high discharge conditions are not particularly difficuit to procure.

Further ‘tests of the model developed in this paper will be made using data from other research
flows, particularly those of July of 1991, and results from analysis of the 3,000cfs (85m3/s) to 26,000cfs
(736m3/s) dye study will be used to test model predictions over this range of conditions. It is important
to note that the above stated disch;rge range is for the Dam and that the trough discharge at Diamond
Creek during this research flow never went below about 6,200cfs ( l';ém:;/s). Only low steady
discharges from the Dam produce similarly low discharges at the downstream end of the system. Flow
calculations for normal discharge ranges indicate that control over downstream flow and sediment
transport is subtle and must be considered in'light of accurate global and local flow models. The latter
have not been addressed in this report, but currently.are being developed for several reaches for which
detailed topographic information is available. NEventually, these local models wiil be spliced together
with the global one in order to interpret important field measurements previously made at specific sites;
pevertheless, many important consequences of past and propos.ed flow and the sediment transport
scenarios can be evaluatgd in detail using a reach-averaged model.

From a sediment transport point of ;fiew, the results presented in this report are paﬁicularly
important as they provide a solid foundation on which reliable suspended sand transport computations
can be based. Such calculations yield specific predictions about the effects of steady and unsteady flows
on redistribution and loss of sand added to the system by the Paria and Little Colorado Rivers, and they
clearly demonstrate that some sediment is and will continue to be retained rather effectively in the upper
canyon by its geometry. Also they show that sand can be held or redistributed in the upper part of
Marble Canyon by the shape of the daily discharge wave that is produced at the Dam. Our results

demonstrate that the amount of sand retained in the upper part of the system can be controlled quite
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precisely, and that operational strategies for the Dam could be developed to store sand in the upstream
part of the system in prepa.ration for high stage beach building flows of reasonable duration. Our results
also show that the only major control of upramping rates is through the amplitude of tbe.diséharge wave
that is produced; high amplitude waves transform more rapidly and produce steeper leading edges. These
high amplitude waves also are the ones with the broad trailing edges making it very difficult to alter
downramping rates in the lower part of the Canyon. The high amplitude discharge waves transport more
sediment than do lower amplitude ones with the same mean daily water discharge, and in the long run
this results in a reduction in the amount of sand stored on the bed of the channel.

In conclusion, this paper demonstrates that flow in the Colorado River between the Glen Canyon
Dam and Djamond Creek can be calculated under normal conditions with the accuracy required to
evaluate reach-averaged sediment transport rates, and to determine the gross redistribution of sediment
along the River under various discharge scenarios. We have shown that even a system as complicated as
the Colorado River in the Grand Canyon can be understood conceptually, and with appropriate input, can
be modeled effectively. Consequently, it can if desired be managed. in an environmentally sensitive
manner. We also have shown that the sediment transport in this system, as in many others, depends on

subtle and sometimes unexpected flow characteristics.
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Span of Reach Span of Reach Dominant Rock
(River Miles) {River Kilometers) Tvpes - .
J-1l 0-18 Mixed Permian Rocks
0.8-1.5 1.3-2.4 Kaibab Limestone
1.5-3.8 24-62 Toroweap Limestone
3.8-5.5 6.2-9.0 Coconino Sandstone
5.5-11.2 9.0-18.0 Hermit Shale
11-23 18 - 37 Pennsylvanian Clastic Rocks (Supai Group)
23-50 37 - 81 Mid and Lower Paleozoic Limestones
23.2-33.9 37.4-545 Redwall Limestone
33.9-48.8 54.5-78.8 Muav Limestone
50-77 81-125 Cambrian & PreCambrian Sedimentary Rocks
48.8 - 59.3 78.8 - 95.5 Bright Angel Shale
59.3-63.3 95.5-101.8 Tapeats Sandstone
63.3-77.4 101.8 - 124.8 Unkar Group
77 -107 125 - 172 PreCambrian Metamorphic Rocks
. (Vishnu Schist apd Zoroaster Granite)
107 - 117 172 - 189 Mixed PreCambrian Rocks
106.7 © 109.6 171.8-176.4 Unkar Group
109.6 - 117.3 176.4 - 188.8 Vishnu Schist
117 - 140 189 - 225 Basal Cambrian & Mixed PreCambrian Rocks
117.3 - 127.1 188.8 - 204.5 Tapeats Sandstone
127.1-130.7 204.5 - 210.3 Vishou Schist
130.7 - 137.5 210.3-221.3 Bass Limestone
137.5 - 139.7 221.3-224.8 Tapeats Sandstone
140 - 169 225-272 Cambrian Limestone (Muav Formation)
169 - 190 272 - 306 Cambrian Clastic Rocks
169.1 - 176.6 272.1-284.2 Bright Angel Shale
176.6 - 178.8 284.2 - 287.7 Tapeats Sandstone
178.8 - 190.1 287.7 - 305.9 Lava over Cambrian Rocks
190 - 225 306 - 362 Basal Cambrian & PreCambrian Metamorphic Rocks
190.1 - 207.8 305.9 - 3344 Tapeats Sandstone over Vishnu Schist
207.8 - 225.0 334.4-562.4 Vishnu Schist
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Appendix I: Cross-sectional profiles for each of the morphologimlly.similar reaches

Although mean cross-sectional profiles for several morphologicaily simiiar reaches are dispiayed
in Figures 8 to 11, none of these provide comparisons of the symmetric to the asymmetric profiles or
display the degree of variability of the protiles included in the block. as was done for the entire River in
Figure 7. Therefore. Figures Al througih A10 are included in this report in order to display these
properties for each of the morphologicaily similar reach. The format of each of these figures is the same
as that used in Figure 7.
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TA
United States Department of the Interior WG
1

GEOLOGICAL SURVEY —

Water Resources Division
2617 E. Lincolnway, Suite B
Cheyenne, WY 82001

May 1, 1992
Memorandum
To: Dave Wegner, GCES, USBR, Flagstaff, AZ

ORIGINAL

Subject: PUBLICATIONS--Transmittal of revised GCES report by USGS authors

9 From: Jim Wilson, USGS, WRD, Cheyenne, WY

A copy of the new report listed below is attached. I also am sending a copy to the Colorado River
Studies office in Salt Lake City and the NEPA Manager in Denver.

i "Flow and sediment transport.in the Colorado River between Lake Powell and Lake Mead,” by
J. Dungan Smith and Stephen Wiele

As with the other USGS reports, please treat this as an internal working document for use by

| Colorado River Studies personnel only. This report will be updated one or more times before it is
| published. USGS policy is that it not be made available to the public, nor should it be cited as a

j reference or listed in bibliographies, until it has been published.

|

| James F. Wilson, Jr.
Attachments

Copy to: R.D. Mac Nish, District Chief, WRD, USGS, Tucson, AZ
j . G.R. Marzolf, WRD, USGS, Boulder, CO
| Tim Rea dle, USBR, Denver, CO

e GCES OFFICE COPY
l DO NOT REMOVE!
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