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ABSTRACT

Recent flooding exerted significant impacts on riparian
substrates, riparian plant communities, and invertebrate
herbivore populations in the Colorado River riparian
corridor in Grand Canyon. Riparian substrates were scoured
and leached by flooding in 1983. Base cation
concentrations, %organic matter, and %silt+clay decreased
relative to the substrate surface level following flooding,
while pH remained unchanged. Increased %sand in this system
implies increased rates of erosion, leaching, and
desiccation of beach substrates, conditions which represent
a significant decline in habitat quality for existing and
future riparian plant 1ife.

Flood-induced plant mortality was significant in this
system, and reduced rgparian plant abundance by more than
50% below the 1,700m”/sec stage. Sources of mortality
included 1) removal, which was dependent on plant
architecture; 2) drowning/thrashing; and 3) burial beneath
newly deposited fluvial sediments. Mortality was strongly
differential, with relatively high survivorship of Tamarix
chinensis, Salix wexiqua, and S. gooddingii, and Tow

survivorship of Baccharis spp., Brickellia longifolia, and
xeric-adapted species. Flooding did not eliminate any
species from this system. In 1983 and 1984 flooding
promoted germination of riparian plant seedlings, especially

Tamarix and Baccharis; however, recovery of the habitat

through recruitment of riparian plants is uncertain.

Flooding negatively affected invertebrate herbivore
populations on Tamarix and Salix exigqua in 1983, but was
correlated with an outbreak of Opsius stactogalus

(Homoptera: Cicadellidae) on Tamarix in 1984. Flooding
also negatively affected terrestrial and fossorial
invertebrate populations. Trophic relationships between
terrestrial and aquatic components of the riparian ecosystem
are complex in this system and are described in relation to
suggested changes in the operating criteria of Glen Canyon
Dam.
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CHAPTER I: A GENERAL INTRODUCTION TO THE STUDY

The effects of regulated flow on terrestrial riparian soils, vegetation,
and animal life are significant and complex, yet have received little
attention from pedologists, ecologists, and habitat managers. The Tlack
of research in this field is unfortunate given the general wildlife and
recreational value of the riparian ecosystems which develop downstream
from dams. Here in the arid Southwest, riparian lands are among the
most ecologically productive terrestrial habitats, supporting a great
diversity of plant life (Phillips in press), invertebrate life (Stevens
1976a, b) and vertebrate life, especially reptiles, birds and small
mammals (Johnson and Carothers 1982; Johnson et al. 1985; and others).
In the following study, we document changes in physical and chemical
substrate characteristics, riparian plant populations, and riparian
invertebrate populations that took place as a consequence of flooding in
1983, 1984, and 1985 in the post-dam Colorado River riparian corridor in
Grand Canyon, Arizona.

Prior to the completion of Glen Canyon Dam in 1963, the Colorado River
in Grand Canyon was subject to extreme variation in flow over the course
of a year (Howard and Dolan 1981).  Scouring spring floods removed
virtually all perennial vegetation from the river banks and deposited
vast quantities of fine sand, silt and clays. Flood-borne sediments
kept the river water turbid and probably prevented algae (Cladophora)
from colonizing .the river bottom. The last pre-dam, ten-year flooding
event of 3,530m%{sec took place in 1957. Other record pre-dam flows
include a 6,230m>/sec flow in 1922 and a 8,500m3/sec flow in about 1884
(R. Webb pers. comm.).

With the construction of the dam, the river's flow regime was
dramatically altered (Howard and Dolan 1981) and the riparian zone
became available to colonizing plants (Turner and Karpiscak 1980). The
most vigorous invader species was exotic Tamarix chinensis, but native
species also began to colonize this system about 1970 (Martin
unpublished 1970). From 1963 to 1980, as the reservoir was filling, a
dense zone of riparian vegetation grew up in the newly stab&]ized
environment. Because flows were typically maintained below 820m~/sec,
vegetation grew down to that stage, with stem density highest near this
new high water line (Carothers et al. 1979). Riparian vegetation
occurred in bands parallel to the river, with a pre-dam line of Fallugia
paradoxa, Prosopis glandulosa and Acacia greggii. The new riparian zone
vegetation consisted primarily of Tamarix, Salix exigua, several species
of Baccharis, and Tessaria sericea, and occupied a dense zone at the
water's edge. Invertebrate and vertebrate life gradually increased in
diversity and reached high levels in the new riparian zone (Carothers
and Aitchison 1976). Flooding was rare during th1's3 phase of the
system's development. The largest post-dam flood 1,576m>/sec, occurred
in 1965, and regulated flows rarely exceeded 850m5/3ec.

In 1980, a wet winter year, the reservoir finally filled and a flow of

1,400m3/sec passed through the river corridor (Figure 1.0).  This
flooding event inundated much of the newly established vegetation and
eroded a considerable portion of beach habitat. This flow was of




relatively short duration and resulted in little: mortality among the
riparian plant life. Above normal winter snowfalls in the spring of
1983 forced the Bureau of Reclamation to release a record post-dam
discharge of 2,620m3/sec through Grand Canyon, and that flood is of
particular interest 1in this study. In 1984, apd again in 1985,
summertime flows were maintained at eor above 1,130m°/sec for prolonged
periods of time, and this flooding continued to affect edaphic
processes, riparian vegetation, and terrestrial animal Tlife in this
system (Figure 1.1). ‘

Objectives of the Study

As part of the cooperative National Park Service and Bureau of
Reclamation environmental assessment of the operating criteria of Glen
Canyon Dam, the study reported here was designed to address the issue of
how recent flooding and the operation of Glen Canyon Dam affected
terrestrial riparian edaphic characteristics, vegetation, and
invertebrate populations associated with riparian vegetation. Except
for erosion, which is being studied by another research team in this
environmental assessment, minor daily fluctuations in discharge Tlevels
do not appear to greatly affect terrestrial riparian substrates or
vegetation and low-magnitude daily discharge flutuations have not been
examgned in this study. Rather, it is prolonged discharge in excess of
850m”/sec that exerts the most significant effects on this riparian
system, and we have concentrated our studies on these recent, above-
normal flows. Where possible, we will address management considerations
relevant to circadian fluctuating flows.

In the following report we examine the effects of prolonged flooding in
1983, 1984 and 1985 on: 1) chemical and physical characteristics of
terrestrial riparian substrates, 2) riparian vegetation, and 3) riparian
invertebrate populations associated with that vegetation. Whether from
the standpoint of soils or herbivores, we are primarily concerned with
the ways in which flooding affects the producer trophic level in this
ecosystem, riparian plant establishment, growth, and plant population
dynamics.

Time Budget of Work Accomplished

A total of approximately 1,620 hours was spent directly on the
research described in this report. The time devoted to each of the
three aspects of this study was divided as follows:

Edaphic Research:
Field time, 100 hours (excluding travel time).
Laboratory time, 300 hours. Analysis and report

preparation time, 240 hours.

Vegetation Research:
Field time, 300 hours (excluding travel time).
‘Laboratory time, 100 hours.
Data analysis and report preparation time, 180 hours.




Invertebrate Population Research:

Field time, 50 hours (excluding travel time).

Laboratory time, 160 hours. :

Analysis and report preparation time, 120 hours.
NPS/BOR meetings and consultation, 80 hours.
Volunteer Time
- Field and laboratory time in 1984 and 1985, 1,000

hours.

Field research was conducted from: three 17-18 day river research trips
(June and August, 1984; June, 1985), of which two were funded and the
latter was partially funded, with 5 to 6 volunteers/trip; one 3-day
kayak trip through Marble Canyon in October, 1984; one 4-day raft trip
form Havasu Creek to Diamond Creek in mid-November, 1985; four
commercial river trips; and several land-based trips to Lees Ferry and
the Mile 43 vicinity. Travel time on these expeditions was not included
in the above summary of research time for this study.
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FIGURE 1.1:

1980 1985

PERCENT OF NORMAL MEAN ANNUAL DISCHARGE FROM GLEN CANYON
DAM, TOTAL ANNUAL PRECIPITATION, AND MEAN ANNUAL TEMPERA-
TURE IN GRAND CANYON FROM 1980 TO 1985. DISCHARGE DATA
FROM LEES FERRY, WITH A NORMAL POST-DAM DISCHARGE OF
360m3/sec. (HOWARD AND DOLAN, 1980). CLIMATIC DATA TAKEN
FROM SELLERS AND HILL (1974) AND ANNUAL N.O.A.A. REPORTS
(1980-1985) FOR PHANTOM RANCH.




CHAPTER II: THE EFFECTS OF FLOODING ON RIPARIAN SUBSTRATES

Introduction

Riparian substrates in arid regions are typically of fluvial origin, and
often occur as well-stratified, superimposed laminae of clays, silts
and/or sands. Because of regular disturbance and inundation of these
relatively unweathered fluvial entisols, inceptisols and mollisols (U.S.
Soil Conservation Service 1975) may be considered as torrifluvents or,
on more stable sites with increased organic matter, as haplustolls
(Brock 1985). Many authors do not consider fluvial deposits as "soils"
in the pedological sense of the word (e.g. Galel' and Malan'in 1977)
because of the unweathered state of such substrates.

Fluvial substrates in Grand Canyon occur in pre- and post-dam terraces
and have not been described in detail (Carothers et al. 1979; Howard and
Dolan 1981; Scala unpublished 1984). Riparian substrate characteristics
in the Colorado River corridor have been examined in two unpublished
studies. In a preliminary survey of soil-plant relationships, Harrison
(unpublished 1981) examined pH, organic matter, nitrate, phosphate, and
texture on a small number of samples from near-river, mid-beach, and
pre-dam terraces. He found the mid-beach zone (corresponding to our
Zones B and C, see below) characterized by 1) a lack of vegetation, 2)
low nitrogen status, and 3) larger particle size substrates sorted by
eolian processes. Harrison suggested that vegetation density increased
on sites with relatively small particle size, low sand content, and high
nitrate concentration. Unfortunately, no details of collection sites,
methodology, or statistics were provided in his report.

Scala (unpublished 1984) examined relationships between riparian
vegetation, river hydrology and sedimentation in the post-dam system
prior to 1983. Using principal components analysis he found base cation
concentration to be negatively correlated with particle size. He also
found that tributaries exerted a strong local influence on substrate
texture. Scala described preferences of vegetation for certain
substrate characteristics; for example, he found Tamarix associated with
finer sediments than either Salix or Tessaria. All base cation species
except potassium showed a pronounced "bulge" at 50cm depth. Potassium
was highest at the surface beneath mesquite and was also found in
significant concentrations beneath Tamarix and Tessaria. Potassium
concentration declined with depth. In an analysis of site-averaged
substrate characteristics in riverside, intermediate, and pre-dam
terraces, Scala found lower values of percent silt and base cations
among riverside sites than among pre-dam sites. Percent sand was
greater at all depths on riverside sites than on pre-dam sites.

Scala (op. cit.) also described base cation concentration in post-dam
river water and compared it to that in riparian
substrates. The post-dam river carried a dissolved load comprised of

40.1% Ca2*, 43.0%Na*, 14.83Mg2*, and 0.21K*:

Na

Ca > Mg >> K




In contrast the riparian substrate .thibit§g Ca2++ concentrations
commonly 10 to 30 tEmes greater than Na® or Mg™ and K™ 3 to 10 times
lower than Na¥ or Mg<*:

Ca >> Na = Mg > K

Scala attributed cation concentration differences between the river and
riparian substrates to eolian and colluvial transport of dust and debris
in the terrestrial substrates.

Recent beach sand studies have been undertaken by Beuss (unpublished and
pers. comm.) in this system. Seiving analysis was conducted on samples
from approximately 30 beaches throughout Grand Canyon. Preliminary
analysis of his data show no change in the %sand following recent
flooding in this system; however, his analyses are still underway. He
sampled surface sediments on beaches with relatively high levels of
recreational impact. .

Objectives

These studies left important questions unanswered, such as the general
course of pedogenesis in this system, the effects of streamflow
requlation on substrate characteristics, and the nature of interactions
between vegetation and substrate. These questions, as well as those
related to the effects of recent, high amplitude flooding events on
riparian vegetation stimulated the present study. Therefore, we
undertook a research plan designed to address the following questions
regarding the effects of flooding on physical and chemical substrate
characteristics from the standpoint of their impact on riparian
vegetation in this system: ,

1) How did flooding in 1983-1984 affect substrate pH, cation
concentrations, texture, and organic content, relative to the exposed
substrate surface available to vegetation?

2) What are the consequences of these flood-induced substrate changes
on subsequent growing conditions for riparian plants?

3) What general pedogehic trends in substrate characteristics have
taken place through time in the post-dam era?

4) Under what operating criteria can Glen Canyon Dam maximize the
beneficial effects of flow regulation for terrestrial substrate quality
in this system?

Methods

Efforts were undertaken to describe riparian substrates and examine the
effects of discharge stage, reach type, distance from Glen Canyon Dam,
and vegetation cover on substrate characteristics. Twenty of Scala's
(op. cit.) sample sites were visited and resampled in the summer and
fall of 1984 (Figure 2.1). Scala sampled these sites with Stevens in




1981 and the sites we selected to resample were those that best
represented characteristic floodzones, terraces, cover types, and
substrates. Sites were chosen to minimize disturbance from tributaries
and human (recreational) impacts. By carefully selecting our sites we
were able to determine how recent flooding events in this system
influenced edaphic parameters important to riparian vegetation. These
twenty sites were located in four of the Bureau of Reclamation's five
reaches in Grand Canyon, from Lees Ferry to Mile 198.5R.

In re-sampling the 1981 sites we attempted to determine how substrate
conditions had changed for existing and potential riparian plant life at
each site. We resampled at the same location but collected our samples
using the surface as our baseline. ,n several cases the substrate
surface had been so completely altered that precise relocation of the
original site was not possible. For example, sites at Miles 41.0R and
50.5L were thoroughly scoured jn 1983 and are presently exposed only at
flows below approximately 500m”/sec. quor to 1983 the surface of these
sites lay at approximately the 1,000m”/sec level and was covered by
extensive stands of Salix exigua. Resampling at these sites was
conducted at approximately the same relative surface location. Where
precise relocation of the site was not possible, only the data from
homogeneous, extremely uniform sites were used (e.g. in open beach
substrates). :

At each site a 1.5m hole was excavated with a shovel and 500g samples
were extracted at depths of 5, 35, 50, 75, 100, and 150cm (where
possible), relative to the surface. Samples were extracted from the
exposure with a plastic scoop or plastic bag to prevent contamination.
Samples were placed in labeled plastic bags and the following
information was recorded: location, date of collection, detailed
observations on the substrate profile, condition of the site,
approximate stage of the surface, and changes in vegetational cover type
engendered by flooding. These parameters were considered to influence
substrate chemistry and structure. Samples were returned to the
laboratory where they were air-dried at 20°C prior to analysis.

Floodzones were3defined as follows: Zone A extended from the 700m3/sec
stage to 1,130m”/sec gnd was the zone3of greatest flooding impact; Zone
B lay between 1,130m”/sec and 1,700m”/sec and fustained less pgo]onged
inundation in 1983; Zone C lay between 1,700m”/sec and 2,500m”/sec at
the top of the 1983 floodzone; and Zone D lay above the 2,500m”/sec
stage--above the zone of impact from the 1983 flooding event. The
approximate stage of a sample site was determined in relation to known
stage lines and the top of the 1983 flood zone. Relatively constant
discharge during the first half of 1984 left a distinct "bathtub ring"
along the river bank at approximately the 1,200m°/sec level, which
served as a useful reference during our sampling. '

Cover type categories included 1) sites that had been open beach sites
in 1981 (all remained open beach sites in 1984); 2) sites which had been
covered by S. exigua in 1981; 3) Tamarix chinensis-sites; and 4) Zone D
sites with miscellaneous vegetational cover (Prosopis, Acacia, Larrea,
Tamarix, and grasses).




For 17 of the 20 sites, we obtained Scala's (op. cit.) original 1981
35cm-depth samples, which we had compared with our surface-relative 1984
sampling program. Scala's samples were subjected to the same analyses
as our- 1984 samples, allowing us to make accurate comparisons of
substrate changes before and after the flooding.

In the laboratory the following analyses were performed: pH, texture
(%sand, %silt+clay, and %clay) and selected cation concentrations. In
addition, percent burnable organic content plus carbonates was
determined for samples at 35cm depth for which matching samples from the
1981 survey were available.

Colorimetric determination of sample pH was. made using a Morgan soil pH
kit. Several grams of sediment were placed in a sampling dish and
saturated with a pH sensitive dye. After 3 minutes the color of the
sample was matched against standard soil pH color charts. Colorimetric
determinations were compared with those made using an electronic
Photovolt pH meter and were found to be generally comparable. To
accurately determine pre- to post-flooding changes, pH was determined by
electronic probe for the matched 1981-1984 35-cm depth.

The concentrations of sodium (Na*), potassium (K*), calcium (Calt) and
magnesium (Mg *) cations were determined in all samples. Cation
extraction was performed using a weak acid and was performed in
accordance with standard soil chemical techniques (Folk 1980). A1l
glassware was acid-washed prior to use to prevent contamination. A
subsample of each sample was dried at 40°C to constant weight; 12.5g of
dried substrate was placed in 50m1 of a weak acid solution (0.05 N HC1 +
0.025 N H2504) and shaken on an mechanical shaker for 5 minutes. This
solution ‘was immediately filtered by suction twice to remove all
suspended particles, placed in a labeled, plastic bottle, and
refrigerated. By using a weak acid extraction solution and a short
extraction time we approximated levels of cations available to plants
(Scala op. cit.) To ensure precision, the acid equivalence of the
extraction solution was verified against a known concentration of
NaOH. The acid equivalence proved to be 0.077 N acid, extremely close
to the 0.075 N required by the extraction protocol.

Cation concentrations were determined under standard conditions and
procedures using a Perkin-Eimer 560 Atomic Absorption Spectrophotometer
(Perkin Elmer 1982). Sample solutions were diluted according to cation
concent£etions: for analyses of Na® and K+, samples wegg diluted 1:8.5
the Mg dilution factor was 1:45; and that for Ca was 1:455,6.
Samples were diluted with 10,000ppm CsC1 and 10,000ppm La solutions to
prevent phophorus binding. Diluted solutions were vortexed for 5
seconds and concentrations were determined at the appropriate

transmission wave length for each cation against EPA standard solutions
of each cation.

Aspects of substrate texture were determined using two techniques.
First, we matched Scala's use of the Bouyoucos (1927) particle size
determinations. Fifty g of dried sample were placed in a 1 N calgon
(TM) solution and slaked for 15 minutes. This solution was vigorously
mixed in a commercial milkshake blender for 15 minutes. The solution




was then placed in a 2-liter glass Bouyoucos cylinder and promptly
shaken for 20 seconds. A soil hydrometer was immediately placed in the
cylinder and readings were made at 40 seconds (the standard length of
time for sand-sized particles to drop out of solution) and again at 2
hours (the time required for silt-sized particles to drop out of
solution). Temperature was recorded at both readings and used to
correct %sand and #%silt values. This technque is of marginal value for
%»sand analyses because of the difficulties with obtaining accurate
readings in such a short period of time, and %sand data were not
regarded as reliable. Consequently, only %clay data are included in our
results.

Sieving analysis, a more accurate analytical technique, was used to
determine %sand and %silt+clay in the samples. Samples were air dried
and mechanically shaken through a stack of seives with known,
progressively smaller, diameters. The weight of the contents of each
seive was determined in relation to the total weight of the sample. The
U.S. Geological Survey staff in Tucson graciously performed these time-
consuming seiving analyses for all samples. The U.S.Geological Survey
defines sand-sized particles as being between 0.0625mm and 1.000mm, and
silt or clay particles as less than 0.0625mm (J.Graf pers. comm. 1985).

Organic content of the matched 35cm depth samples was determined by
drying subsamples at 100°C to constant weight, weighing the dried
sample, ashing it at 500°C to constant weight, and then reweighing it.
While extremely simple, this procedure burns carbonates along with the
organic matter; however, according to Beuss (pers. comm.) fluvial
sediments 1in this system consist almost entirely of quartz (5102).
Burning therefore provides a relatively accurate index of organic
content.

Data were analyzed using SPSS (Nie et al. 1975) and Minitab (Ryan et al.
1976) statistical packages. Textural and %organic content analyses were
percentage data by volume, not count data, and therefore a search was
made for the best data transformation technique to stabilize the
variance. Loglo, square root, arcsin, and squaring transformations were
tried; however, raw percentage data provided the best fit of all
techniques tried in regression analyses.

Results

In general the substrates of the Colorado River riparian corridor were
found to consist of unweathered, alluvial, light-colored, fine silty.
sands or sandy silts with little organic matter. In pre-dam terraces,
where the sediment profile remained undisturbed by flooding, these
sediments were deposited as stratified, superimposed laminae of
texturally uniform, hydrophobic silt loam, loam, sandy loam, loamy sand
or sand (as defined by Bodman and Mahmud 1932). In contrast, the
sediments in zones A and B were typically sand or loamy sand, more
coarse in texture, less stratified, and non-hydrophobic. Buried,
inundated pre-dam sediments in Zone A were often odoriferous and gleyed
(bluish in color), indicating the development- of reduction environments
during inundation (Birkeland 1984).
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A1l of the sites in Zones A and B that were resampled in 1984 had been
altered by recent flooding. All 4 open beach sites in 1981 remained as
open beach sites. Four of 5 sites covered with Salix exiqua-in 1981
were entirely devoid of vegetation in 1984, Of the 5 sites covered by
Tamarix in zones A and B, 1 had been devegetated, 3 sustained
significant reduction in cover, and 1 site was relatively undamaged.
Thus, only 1 of 10 vegetated sites was relatively unaffected by
flooding, while 30% sustained significant damage and 60% were completely
devegetated. :

Flood-induced substrate disturbance in this system was not merely
surficial. The absence of stratification, structure, and roots in Zone
A and B sample pits indicated that a significant amount of scouring,
burial and redeposition occurred during flooding. Three of 14 sites
(21.4%) in zones A and B had been scoured, 5 of 14 sites (35.7%)
received new deposits of fluvial sediments, and 6 of 14 sites (42.9%)
were relatively unchanged. At the Mile 43.1R site, sediments were
removeg to a depth of at least two meters as the stage increased to
1,700m>/sec in 1983. Scouring occurred at Mile 165.0R and at all sites
occupied by Salix exigua except those at Mile 1.2R and 50.2R. Following
subsidence of the 1983 floodwaters, many beaches reappeared with almost
precisely the pre-1983 morphology and surface elevation; however,
sampling these new beach deposits after subsidence of floodwaters
revealed little laminar stratification and no roots to 1.5m depth.
These observations as well as physical and chemical analyses of
sediments suggest that eddy beach deposits were replaced as a
consequence of flooding, with scouring po§sib1y occurring during rising
discharge, particularly above the 1,130m°/sec stage, and redeposition
during subsidence of floodwaters.

Substrate pH

Differences in substrate pH were determined between vegetation cover
types, between discharge zones (floodzones), and before and after the
1983 flooding event at relative substrate surfaces. Colorimetric
analyses showed that substrate pH in 1984 varied slightly between cover
types and between inundated and non-inundated- zones (Table 2.1, Figure
2.2). The mean 1984 depth-averaged (DA) pH for all 20 sites was 8.17;
however, DA pH values were lowest in Zone D (mean = 8.03, n=6), with
progressively higher values in Tamarix stands (8.13, n=7), former Salix
exigua stands and open beaches (8.24, n = 5 for both). DA pH values
between the 4 cover types were marginally significantly different
(p=0.051, df=3,16), with Zone A Tamarix sites intermediate between Zone
D and non-Tamarix Zone A sites (Table 2.2). DA pH values in Zone A
Tamarix sites were not significantly different from Tamarix sites in
Zone D (p=0.876, df=1,5). Zone A DA pH values averaged 8.27, while the
mean in Zone D was significantly lower at 8.08 (p=0.025, df=1,18).

Electronic probe analyses of 35cm depth pH changes between 1981 and 1984
relative to substrate surface level, indicated that flooding homogenized
differences in substrate pH which existed between the four cover types
prior to 1983 (Table 2.3, Figure 2.2). Prior to flooding the mean pH
values for inundated Tamarix sites at 35cm depth was 7.75 (n=4), while
mean values for Salix exigua (8.03, n=5) and open beach sites (8.15,
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n=4) were significantly higher (p=0.040, df=1,4). In 1984 differences
between these cover types in Zone A were non-5Significant at 35cm
depth. The Paria Beach site at Mile 1.2R was excluded from these and
other substrate comparisons because of its proximity to a major
tributary.

Regression of substrate pH at 35cm depth on all beaches (except Paria
Beach) in Zone A against dista fce downstream showed no correlation and
was nonsignificant in 1981 (R¢ approaching 0.0; Table 2.5). . In 198
correlation between these factors remained non-significant, but R
increased to 0.131 (n=1,7) Regression of DA pH values with distance
downstream from Glen Ca gon Dam for unvegetated Zone A beach sites
showed no correlation =0.0% adjusted for df; p=0.231, df=1,7), as
indicated in Table 2.4.

Trends in pH with depth were comparable but not significantly different
between Zone A and Zone D sites in the upper 100cm of the profiles;
however, some divergence in pH was noted at 150cm depth, where the pH of
non-inundated sites declined while that of %he inundated sités increased
(Figure 2.4). No correlation was found approaching 0.0) between pH
and substrate depth.

Regression of pH at 35cm depth with stage (Tocation of sampling pit
relative to the river) showed these two var1ab1§s to be weakly
negatively but not significantly correlated in 1981 (R 0. 12% p<0.10,
df = 1,15), a relationship which remained unchanged 1n 1984 (R“ = 0.115;
p<0.10, df = 1,18) (Table 2.6).

Base Cations: Sodjum Cation Concentrations

In 1984 sodium (Na') concentrations averaged 101.2ug/g for all 20 sites,
with lowest values in former S. exigua stands (20.7ug/g, n=5), slightly
higher values in Zone A Tamarix stands (49.6ug/g, n=4) and open beach
sites (51.9ug/g, n=5), and much higher in all Zone D sites (243.8ug/g,
n=6); however, cover type differences were not significantly different
(p=0.193, df=3,16) because Tamarix occupied both inundated and non-
inundated zones (Tables 2.1 and 2.2). DA sodium concentrations in Zone
A Tamarix sites averaged 49.6ug/g (n=4), while those in Zone D averaged
405.7ug/g (n=3), significantly different at p=0.027 (df=1,5). Overall
DA sodium concentrations averaged 40.lug/g in Zone A and 243.8ug/g in
Zone D, a difference that was significant at p=0.004 (df=1,18).

Analyses of between-year differences in sodium concentrations at 35cm
depth show a decline in Na' concentration in all cover types through
time relative to substrate surface level (Table 2.3, Figure 2.3). In
all Zone A sites this decline was significant, from a mean of 51.8ug/g
in 1981 to 22.0ug/g in 1984 (p=0.018, n=12); however, Na* concentrations
did not change significantly over this interval in Zone D -(p=0.625,
df=3).

Regression of DA sodium concentrations on unvegetated beach sites in
1984 with d1s§ance downstream from the dam revealed no s1gn1f1cant
correlation =0.0 adjusted for df; nsd, df=1,7), as shown in Table
2.4, Likew1se, regression of Na concentration at 35cm depth on Zone A
and B beaches with distance from Glen Canyon Dam in 1981 and 1984
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and B beaches with distance from Glen Canyon Dam in 1981 and 1984
indicated no correlation between these variables (Table 2.5).

Sodium concentrations in 1984 in Zone D showed a distinct "bulge" at
50cm depth (Figure 2.5). Zone A sample pits revealed a similar bulge at
100cm depth, indicating that sodium was being leached down through the
profile. Sodium is highly soluble and it was probably lost through
leaching in this system, rather than being drawn to the surface by
capillary action (Birkeland 1984).

Regression of sodium concentration at 35¢cm depth as a fUnctiQn of stage
produced a significant, positive correlation in 1981 (R% = 0.266;
p<0.025, df = 1,15) and an improved correlation in 1984 (RZ = 0.378;
p<0.001, df = 1,18), as shown in Table 2.5. This further suggests that
sodium is being leached from the system by flooding.

Base Cations: Potassium Cation Concentrations

Potassium (K') concentrations, Tlike sodium, were low in this system,
with an overall DA mean of 51.5ug/g (n=20), as shown in Table 2.1. The
lowest values were obtained in Zonme A in former S. exigua stands
(mean=14.%4g/g, n=5), with slightly higher values on open beaches
(23.8ug/g, n=5) and Tamarix sites (42.5ug/g, n=4), and much higher
- values on Zone D sites (111.0ug/g, n=6). Table 2.2 shows that
differences between cover types for this cation were significant at
p<0.001 (df=3,16). The S. exigua and open beach sites were
significantly lower in DA K¥ concentrations than were Zone A Tamarix,
which were significantly lower than Zone D values (Table 2.1). DA Zone
A Tamarix sites had significantly lower K concentrations than did Zone
D Tamarix sites (mean=93.6ug/g n=3). Overall differences between Zone A
and Zone D K™ concentrations were significant at p<0.001, df=1,18.

Potassium cation concentrations at 35cm depth declined from a mean of
34.8ug/g to 17.0ug/g on Zone A sites between 1981 and 1984 (p<0.001,
n=13; Table 2.3), relative to substrate surface level. In contrast, the
non-inundated Zone D sites showed no significant decline in K

concentration.

Table 2.4 shows that DA K* concentration on unvegetatfd 1984 beaches was
not correlated with distance from Glen Canyon Dam (R€=2.5% adjusted for
df; p>0.05, df=1,7; Table 2.4), despite a relatively strong positive
correlation between 35cm depth concentrations and distance (Table
2.5). This discrepancy was attributed to high K* concentrations at the
surface (especially beneath Prosopis and Tamarix canopies), with
consistent depletion through depth in the profite (Figure 2.5).

Potassium concentrations were markedly higher at the surface on Zone D
sites, with a slight bulge at 75cm depth. K™ concentrations were
uniformly minimal throughout the Zone A profiles (Figure 2.5). The
trend Scala (op. cit.) reported-of high K* concentrations at the surface
beneath Tamarix was found only on non-inundated Zone D sites (Figure
2.3). Zone A potassium concentrations were uniformly low throughout the
profiles. Leaching is the most likely cause for the disappearance of
high surface K* concentrations.
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Regression of potassium concentrations at 35cm depth against stagg
showed a positive, statistically significant relationship in 1981 (R
=0.478; p<g .005, df = 1,15) and a stronger, more significant correlation
in 1984 = 0.604; p<0 001, df = 1,18), as indicated in Tables 2.3 and
2.6.

Base Cations; Calcium Cation Concentrations

Calcium (Ca’’) concentrations were much higher than Nat or ¥
concentrations in this system, with an overall 1984 mean for all 20
sites of 1,406.3ug/g (Table 2.1). DA Ca values were lowest on former S.
exigua sites (mean=1,200.4ug/g, n=5), slightly higher on open beach
sites (1,300.2ug/g n=5), still higher on Zone A Tamarix sites
(1,497.0ug/g, n=4), and higher still on Zone D sites (1,607.7ug/g
n=6). Differences between these cover types were significant at p=0.001
(df=3,16), with willow and open beach sites significantly lower thgn
Zone A Tamarix and all Zone D sites (Table 2.2). Analysis of DA Ca +
concentrations in Zone A versus Zone D Tamarix stands showed no
significant differences (p=0.312, df=1,5). Overall, Ca * concentrations
were significantly higher on Zone D sites as compared to Zone A sites
(p=0.002, df=1,18; Table 2.2).

Calcium concentrations at 35cm depth declined significantly from 1981 to
1984 on inundated sites, relative to substrate surface level (p=0.042,
df=12); however, inundated Tamarix sites showed no significant decline
between years (Table % 3, Figure 2.3). Zone D sites showed no
significant change in Ca concentrat1ons between years.

Table 2.4 shows that DA Ca2 concentrations on Zone A and B beaches were
strongly, correlated with distance downstream from Glen Canyon Dam §n
1984 (R = 0.478; p<0.05, df = 1,7), although regression of Ca®'
concentration at 35cm depth on Zone A and B beaches showed no
correlation with distance downstream from Glen Canyon Dam in 1981 or
1984 (Table,2.5). Lack of correlation may be attributable to tributary
input of Ca2+ in this system.

A regress1og of Ca concentration against depth was not significant;

however, concentration reached a peak at the .surface and at 50cm
depth in Zone D soils. The surface peak was mirrored in Zone A soils,
but the subsurface peak declined to 100cm (Figure 2.5).

Regression of ca®* concentration at 35cm depth against stage was not
significant in 1981; ho%fver, in 1984 a significant positive
relationship was observed =0.253; p<0.025, df=1,18; Table 2.6).

Base Cations: Magnes1um Cation Concentrations
Overall DA magnesium (Mg“~") concentrat1on§ averaged 235.9ug/g at 20
sites in 1984 (Table 2.1). The lowest DA Mg~ concentrations were found

on open beach (mean=185.6ug/g, n=5) and former S. exigua sites

(195.3ug/g, n=5), suggesting that leaching removed Mg from inundated
substrates. Higher concentrations were found on Zone A Tamarix sites
(251.9ug/g, n=4), and the highest values were recorded from Zone D sites
(301.1ug/g, n=6). Differences between cover types were significant at
p=0.012 (df=3,16), and Duncan's multiple range test r%yea1ed that open
beach and S. exigua sites had significantly lower DA Mg

concentrations
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than didzgone A Tamarix sites or Zone D sites (Table 2.2). Differences
in DA Mg“* concentrations between Zone A and Zone D Tamarix stands were
not significantly different (p=0.277, df=1,5).

Comparison of 1981 to 1984 samples at 35cm depth showed that Mg2+
concentrations decreased slightly but non-significantly between years
relative to substrate surface level (Table 2.3, Figure 2.3).

No significant correlation was found between DA Mg2+ concentrations and
distance downstream from Glen Canyon Dam (R“=10.1% adjusted for df; nsd)
in 1981 or 1984 at 35cm depth (Table 2.5), or in 1984 for DA values
(Table 2.4).

Magnesium concentrations increased slightly with dggth in Zone D, but
not in Zone A (Figure 2.5). A slight bulge in Mg concentration was
observed at 75cm on Zone D sites, whereas a slight bulge was found at
100cm depth on Zone A sites.

Mg2+ concentrations at 35cm depth were not correlated with stage in
1991, but were weakly correlated with stage in 1984
(R® = 0,332; p<0.005, df = 1,18), as indicated in Table 2.6.

Total Base Cation Concentrations )

The tg;a]imean ?ﬁ base caEion concentration, here considered as the sum
of Na™, k¥, Ca®", and Mg“" concentrations, was 1,794.8ug/g for all 20
sites (Table 2.1). Table 2.2 shows that differences between cover types
were significant at p=0.002 (df=3,16), with concentrations on former S.
exigua sites (mean=1,431.2ug/g, n=5) and open beach sites (1,561.4ug/q,
n=5§ significantly lower than Zone A Tamarix sites (1,838.0ug/g, n=4),
and highest values on Zone D sites (2,263.5ug/g, n=6). Zone A Tamarix
sites had lower total cation concentrations than Zone D Tamarix sites at
p=0.032 (df=1,5). Total cation concentrations among all Zone A sites
Yere significantly lower than Zone D concentrations at p<0.001
df=1,18).

Total cation concentrations at 35cm depth declined significantly
relative to the substrate surface level from 1981 to 1984 among all Zone
A and B cover types except Tamarix (p=0.014, df=12), but total cation
concentrations were not significantly different between years in Zone D
(Table 2.3).

While total cation concentrations at 35cm depth were not correlated with
distance downstream. in 1981 or 1984 (Table 2.5), DA total catioa
concentrations were strongly and positively correlated with distance (R
= 0.455; p<0.05, df = 1,7; Table 2.4).

Regression of total cations against depth showed no correlation between
these factors; however, this was confounded by the non-linear
distribution of cations in the profile. Depth profiles (Figure 2.5)
showed highest total -cation concentrations at 75cm depth in Zone D,
whereas an analogous, less distinct bulge occurred at 100cm depth in
Zone A profiles.
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Regression of total cation concenE{at1ons at 35cm against stage was
positive and significant in 1981 = 0.402; p<0.005, df = 1,15), and
was stonger in 1984 (R = 0.515; p<0 001, df = 1,18). All of these
observations indicate the removal of base cations (largely dominated by
ca]gium in this system) from this system by flood-induced leaching.

Percent Organic Matter and Burnable Carbonates

Substrates with 0.2% to 10% carbon are considered as "mineral soils"
(Allen 1974) and all samples collected fell into this range. The
technique used to assess %organic matter was relatively crude, but it
established a maximum possible value for organic material 1in the
samples. The overall mean %organic matter+carbonates among all 20 sites
at 35cm depth was 0.77% and varied between cover types and zones (Tables
2.1 and 2.2). Percent organic matter + carbonates was lowest in open
beach and former S. exigua sites (mean=0.32% and 0.33%, respectively),
slightly higher in Zone A Tamarix sites (0.49%), and more than 3-fold
higher in Zone D sites (1.70%). Duncan's multiple range test showed
Zone A Tamarix sites were intermediate between the beach sites and the
Zone D sites, but Zone A Tamarix sites were not significantly different
from Zone D Tamarix sites. Differences between the two zones were
pronounced (p<0.001, df=1,18). with Zone A sites (mean = 0.37%, n = 14)
significantly lower than Zone D sites (1.70%; p < 0.001, df = 1,18).

The %organic+carbonate values at 35cm depth were significantly lower in
1984 than in 1981 across all sites, relative to substrate surface level
(p=0.027, df = 16; Table 2.3, Figure 2.2). While 35cm depth values in
1984 were significantly lower than 1981 values in Zone A (p=0.002,
df=12), between-year differences in Zone D were not statistically
different (p=0.919, df=3).

Linear regression of Zone A and B beach %organictcarbonate values from
35cm depth in 1981 with distance downstream from Glen Canyon Dam
revealed no significant relationship, but this same analysis on 1984
data prov1ged a significant positive relationship against distance from
the dam 0.513; p<0.05, df = 1,8; Table 2.5).

Regression of %organic+carbonate at 35cm depth against stage :ras
nonsignificant in 1981, but was strongly significant in 1984
0.565; p<0.001, df =1,18; Table 2.6).

Substrate Texture: Percent Sand

Substrate samples from the Colorado River riparian corridor in Grand
Canyon consisted of fluvial, typically fine, silty sand with minor to
moderate amounts of clay.

The overall DA %sand in 20 substrate samples was 76.9% in 1984 (Table
2.1). Cover types were significant]y different (p = 0.001, df = 3,16),

with open beach and former S. exigua sites containing s1gn1f1cant1y
higher DA proportion of sand-sized particles (means = 96.8% and 92.5%,

respectively; n = 5) than Zone A Tamarix sites and Zone D sites (75.9%
and 48.0%, respectively; n = 4 and 6, respectively; Table 2.2). The DA
mean %sand on Zone A and B beach sites was 89.3% (n = 14), significantly
higher than the Zone D DA mean of 48.0% (p<0.001, df=1,18). Zone A
Tamarix average DA mean was 75.9%, while Zone D Tamarix DA mean was
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39.5% sand. The similarity between Zone A and Zone D Tamarix sites
between years can be attributed to two factors: (1) the substrate
beneath dense Tamarix stands was complex, consisting of numerous laminae .
of fine, erosionally resistant pre-dam sediments (Scala, op. cit.); and
(2) dense root and above-ground vegetation protected the substrate by
holding the soil and by ponding, reducing current velocity in densely
vegetated sites and consequently reducing hydraulic erosion.

Analysis of 35cm depth data from 1981 and 1984 relative to substrate
surface level showed that the %sand increased significantly in Zone A
and B beach sites (p = 0.039, df = 7), and on former S. exigua sites,
but rose non-significantly in Zone A Tamarix sites (Table 2.3, Figure
2.6). Retention of the substrate on Zone A Tamarix sites kept the
increase in %sand in all Zone A and B sites statistically non-
significant. The %sand on Zone D sites did not change significantly
between 1981 and 1984.

Table 2.5 shows that the %sand in Zone A and B beaches at 35cm depth did
not correlate with distance from Glen Canyon Dam in 198l; however, a
significant negative correlation between these two variables was evident
in 1984 (R¢ = 0.378; p<0.05, df = 1,7). This trend was confirmed with
the 1984 DA %sand in Zone A and B beaches, which pEoduced a negative
correlation with distance downstream from the dam (R® = 0.434; p<0.05,
df = 1,7; Table 2.4). These correlations may be attributed to erosion,
redeposition, and/or tributary influences.

As noted above, fluvial sediments in this system consist of interbedded
laminae of relatively uniform size particles, and thus particle size
varies erratically through the profile. Analysis of texture by depth
revealed uniformly %sand with little variation though the profile in
Zone A. Significantly lower %sand and more variable textures were found
in Zone D profiles (Figure 2.6). A weak, negative correlation between -
%sand at 35cm depth and stage in 1981 (R¢ = 0.179; p<0.10, df =1,15) was .
stronger following flooding in 1984 (R2 = 0.511; p<0.001, df = 1,18),
indicating that fine particle sediments were entrained and transported
out of the system by flooding (Table 2.6).

Substrate Texture: Percent Silt and Clay

Because large sands and gravel-sized (>2mm) particles are virtually non-
existent in these fluvial deposits, the #%silt+clay follows precisely the
opposite trend as that observed for sand -- 1ittle silt and clay on Zone
A beach sites in 1984, and significantly higher proportions of these
finer particles in Zone D and Tamarix sites. The overall 1984 DA mean
value for all 20 sites was 22.7% silt+clay (Table 2.1). One way
analysis of variance showed that significant differences existed between
cover types (Table 2.2), with former S. exigua (mean = 3.2%) and open
beach sites (7.5%) having significantly Tower %silt+clay than Zone A
Tamarix sites (23.6%) or Zone D sites (51.0%) at p = 0.002 (df =
3,16). The %silt+clay was significantly lower on Zone A sites as
compared to Zone D (p = 0.001, df = 1,18). Zone A Tamarix sites had a
significantly lower mean DA %silt+clay (0.23.6%, n = &) than did Zone A
Tamarix sites (60.4%, p = 0.017, df = 1,%).
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The %si1t+c1ay in 1981 was significantly higher than that in 1984 on
former S. exigua and open beach sites relative to substrate surface
level TEb] , Figure 2.2) This trend is opposite to that observed
for %sand In Zone D no s1gnificant change in texture was observed
between years.

Regression of Zone A and B beach %silt+clay at 35cm depth with distance
from Glen Canyon Dam produced a non- s1gn1f1 ?nt relationship in 1981 but
a somewhat stronger relationship in 1984 = 0.374; p<0.05, df = 1,7;
Table 2.5). Regression of the DA mean %s11t+c1ay with distance from the
dam also Q{oduced a moderately good correlation of these two variables
in 1984 ( 0.434; p<0.05, df = 1,7; Table 2.4).

The %silt+clay was uniformly minimal with respect to depth in Zone A
profiles, but varied to a greater extent in Zone D profiles in 1984
(Figure 2.6). This is a reflection of the flood-induced disturbance
sustained by Zone A substrates as compared to the undisturbed,
interbedded laminar nature of Zone D substrates.

The con{elation of %silt+clay against stage was weakly s1gn1f1cant21n
1981 = 0.179; p<0.10, df = 1,15), and improved greatly in 1984 (R

0. 512 p<0.001, df =1,18; Table 2 6). This positive regression may be a
funct1on of f]ood 1nduced entrainment and/or tributary input.

Percent Clay

Using the Bouyoucos (1927) hydrometer method, the percent clay in
samples was calculated for all 1984 samples (Table 2.1). These results
are not directly comparable with the %sand and %silt+clay measurements
made by seiving, yet they do corrorborate the process of leaching and
loss of fine particles that characaterize the post-dam Colorado River
riparian corridor. The grand mean DA %clay from all 20 sites in 1984
was 1.80% (n=20, Table 2.1). Former Salix exigua sites (all of which
became open beach sites in 1984) had the lowest mean %clay, at 0.72%
(n=6). Zone A Tamarix sites had 1.03% clay and open beach sites had
1.35% clay. None of these three cover types were significantly
different from each other, yet their overall mean value of 0.945% clay
was significantly lower than the Zone D sites (mean=3.57%, n=6) at
p=0.029, df=3,16 (Table 2.2). Tamarix sites differed significantly
between zones (p 0.006, df=1,5), with a Zone D mean of 3.17% (n=3). DA
Zone A sites conta1ned significantly lower %clay than did Zone D sites
(p = 0.001, df 1,18; Table 2.2).

Comparisons of %clay for matched 35cm depth samples collected in 1981
and 1984 show a significant reduction in %clay between years on all Zone
A beach sites (p = 0.023, df = 4), relative to substrate surface level;
but differences between years among vegetated Zone A sites and all Zone
D sites were not stat1st1ca11y significant.

Scala's (op. cit.) data for 1981 showed a significant negative
correlation between %clay at 35cm depth and distance from Glen Canyon
Dam (Table 2.5). This correlation was not found for either the 35cm
depth samples or the DA %clay data in 1984,
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Scala's (op. cit.) 1981 %clay data from 35cm depth were not correlated
with stage; however, 1984 data from 35¢cm sh%yed a positive,
statistically significant relationship with stage (R¢ = 0.282; p<0.01,
df = 1,18; Table 2.3).

During the pH analyses described above, Zone D sediments were commonly
found to be hydrophobic, while inundated sediments from zones A and B
were always non-hydrophobic.  This observation may result from the
higher clay content in Zone D sediments as compared to Zone A sediments.

In summary, the %sand in fluvial deposits along the Colorado River
in Grand Canyon was highest in Zone A and lowest in Zone D.
Distribution of %silt+clay particles followed precisely the opposite
trend. Tamarix stands that persisted through the 1983 flooding event
maintained higher proportions of silt and clay than did the sparsely
vegetated and beach sites. The %sand at 35cm depth relative to the
substrate surface increased significantly on Zone A beaches between 1981
and 1984, with a concomitant decrease in %silt/clay. Textural changes
were particularly pronounced on sparsely vegetated sites. Densely
vegetated sites in Zone A (e.g. Tamarix sites) experienced similar but
non-significant trends in textural change. Non-inundated sites in Zone
D showed no significant change in substrate texture between 1981 and
1984,

Discussion

Effects of Flooding on Edaphic Parameters

Tn the following section we discuss the significance of flood-induced
changes 1in substrate characteristics, the effect of distance from Glen
Canyon Dam, pedogenesis (soil evolution) through time, and the effects
of substrate changes on present and future riparian vegetation in this
system. :

Substrate pH

Substrate pH reflects the influences of several environmental factors in
this system. Soil pH generally declines as upper soils age, base
cations are leached out, and as organic acids form (Birkeland 1984).
Relatively high pH (approximately 8.1) near the surface indicates recent
age near the river and/or slow rates of decomposition on pre-dam
terraces, and is also indicative of the high carbonate concentrations in
this system which probably buffer the substrate pH. Flooding
homogenized substrate pH among the 4 cover types examined, relative to
substrate surface level, and produced a significantly lower soil pH only
on open beach sites in the inundated zone. In 1984 old high water zone
substrates had a significantly lower DA pH than did new riparian zone
sites. In the post-dam era, new riparian zone substrate pH appears to
be decreasing slighltly, approaching that of the river; pre-dam terrace
pH values appear to be stable and somewhat lower. The pH of beach sands
in Zone A may decrease slightly downstream from Glen Canyon Dam through
time, and pH decreased slightly from the river's edge to the pre-dam
terraces. The changes in substrate pH induced by flooding were
relatively minor and probably do not significantly affect terrestrial
vegetation in this system.
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Base Cat10n Concentrations
F1ood1ng/1each1ng reduced substrate cation concentrations among the 4
¥$r types e§$m1n relative to substrate surface levels.  Na', k¥,
a“’, and Mg as we11 as total cation concentrations, decreased
significantly fo]]ow1ng flooding in all cases except for Mg2+ in the
open beach cover type. Inundation of Tamarix sites significantly
reduced monovalent cation concentrations, but divalent and total cation
concentrations were not reduced significantly. Open beach sites and
sites formerly occupied by Salix exigua showed significant declines in
K" and in total cation concentrations. Non-inundated Zone D sites
showed no significant change in cation concentrations between 1981 and
1984,

Analyses of variance of differences in cation concentrations between
cover types and inundation zones showed that significant differences
developed between cover types for a]] DA cation concentrations following
flooding except highly soluable Na*. Differences among cover types were
masked by data from the Tamarix sites, which lay in both Zone A and Zone
n. Detailed analyses of changes on inundated versus non-inundated
Tamarix sites revealed that decreases in monovalent and total cation
concentrations relative to the surface Tevel became significant and
pronounced following flooding, while changes 1in divalent cation
concentrations were non-significant. Differences between Zone A and
Zone D also increased after flooding for all cations.

The Bureau of Reclamation conducted a test drop in the discharge levels
during October 20-22, 1984, and one of us observed the effects of this
test in Marble Canyon. Slumping and bank cutting were pronounced during
this test drop in Marble Canyon, and large cracks developed in beach
faces as water drained from them. The water seeping from beach faces
smelled rank and “swampy", indicating that buried reduction environments
were draining and changing to oxidizing environments. Reduction in the
soil zone typically turns the substrate to a bluish color, and reduced
soils are termed gleyed. Reduction of anoxic soils greatly increases
the solubility of iron, manganese, and other cations (Birkeland 1984),
and significant leaching of soil nutrients and minerals is likely to
occur when discharge levels decline rapidly after a period of prolonged
inundation. Capillary rise in sand and silt soils can 1ift water one to
four meters depending on substrate texture (Birkeland 1984), and thus
fluvial substrates are likely to be affected by the flow regime for a
considerable distance from the river itself.

Organic Matter

Analysis of the percent of burnable organic matter + carbonates in 35cm
depth samples indicates that organic matter is low to extremely low in
this system and all substrates analyzed qualified as "mineral soils" in
Allen's (1974) classification. Open beach sands contained 1little
organic matter, Zone A Tamarix stands contained only slightly more, and
Zone D sites contained a maximum of about 3%. Organic matter was
apparently flushed from the system by flooding, particularly in the
upper reaches, declining signficantly in Zones A and B relative to
substrate surface level, but not in Zone D from 1981 to 1984,
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Texture

Our data show a significant increase in the %sand on Zone A beach sites

relative to substrate surface level, particularly on sites that were
devegetated by flooding in 1983. This trend was not noted by Beuss
(pers. comm.); however, his sampling program differed from ours in
intent. Beuss sampled at absolute levels to determine deposition and/or
erosion, while we sampled at the surface .to evaluate changes in
substrate conditions for existing and potential vegetation. Other
differences between the two sampling programs were that Beuss's samples
were taken from open, previously unvegetated beaches in which our data
also show non-significant between-year textural changes; and his samples
were taken from beaches heavily used by recreationists.

The relative increase in %sand in post 1983 Zone A and B riparian
sediments will probably result in increased susceptibility to erosion,
increased leaching rates, and decreased moisture retention. Leaching
removes soil cations, organic matter, and may eventually lead to
decreased pH (Birkland 1984). During 1984 and 1985, relatively high
levels of discharge kept riparian sediments moist, creating reducing
soil environments at depth in several of the profi]gs sampled. A return
to "normal" post-dam discharges of less than 800m°/sec in this system
will cause dehydration of the substrate, perhaps leaving many seedling
riparian plants without sufficient moisture. This aspect will be
examined in 1986 by one of us (Waring).

In summary, it is clear that the redeposited beaches formed as a result
of flooding 1in 1983 are, in fact, new beaches with significantly
different chemical and physical properties than their predecessors. We
have documented pronounced declines in base cation concentrations
(especially monovalent cations) and in the proportion of fine-particle
silts and clays in the profiles examined relative to substrate surface
level. Flooding/leaching in 1983 and 1984 significantly reduced base
cation concentrations except Mg *. total cation concentration decreased
significantly; the proportion of burnable organic matter+carbonates
declined significantly; substrate texture became significantly more
coarse except where it was protected by dense stands of Tamarix; and pH
remained relatively unchanged, probably as a consequence of the
buffering effects afforded by elevated soil carbonate concentrations in
this system. At the present time riparian substrates in the inundated
riparian corridor of the Colorado River in Grand Canyon are typified by
pH values of approximately 8.0; low concentrations of monovalent Na

(40.1ug/q) End k* (25.9ug/g) a?d relatively high concentrations of.
divalent Ca®t (13l4ug/g) and Mg * (208.0ug/qg); extremely low organic.
content (<0.37%); and a sand texture (89% sand, approximately 9.5 %silt,
and less than 1% clay).

Effect of Distance from the Dam on Edaphic Parameters

Regression of edaphic parameters against distance from Glen Canyon Dam
resulted in several trends. The pH of samples was not correlated with
distance in either 1981 or 1984 35cm-depth samples, or in 1984 DA
samples. Substrate pH is largely a function of ion composition, ion
concentration, and organic content (organic matter produces organic
acids), and is buffered by high concentrations of carbonates. Thus it
is not particularly surprising to find the pH of these high carbonate,
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low organic content sediments relatively uniform throughout the Colorado
River riparian corridor.

Regression analyses of DA base cation concentrations against distance
(Table 2.4) showed significant positive correlations between Ca *. and
total cation concentrations with distance downstream in 1984. ca®t
comprised nearly 80% of the total cation concentration, thus these
variables are strongly intercorrelated. Despite correlations of k*
concentration at 35cm depth with distance from the dam in 1981 and 1984,
DA concentrations of these other three cations did not correlate with
distance.

The DA percent burnable organic matter + carbonates showed a
significant, positive relationship with distance from the dam. Because
this relationship did not exist in 1981, and because 1981 values were
significantly and far higher than 1984 values, we conclude that flooding
removed organic materials in the upper Canyon to a greater extent than
it did in the lower Canyon.

Linear regression analysis revealed a significant decrease in the %sand
and a converse increase in the %silt+clay in open beach substrates with
distance downstream from Glen Canyon Dam in 1984. In other words,
beaches in upper Grand Canyon contained significantly more sand-sized
sediments, and those in lower Grand Canyon contained more silt and
clay. This may be attributed to redeposition of sand in the lower
Canyon and higher rate and period of entrainment of fine particles over
coarse particles. From our data we could not determine which process is
more important; however, other researchers in this environmental
assessment are studying sediment transport and depositional processes
and should clarify these details.

In_ summary, distance from Glen Canyon Dam was positively correlated with
Ca2+ and total base cation concentrations, %organic matter + carbonates,
and %silt + clay, and distance was negatively correlated with %sand.
These results suggest that flooding exerted a greater impact on
terrestrial riparian substrates in the upper reaches, and that flood
related impacts in the lower Canyon may be obscured by tributary
influences. '

Pedogenesis

Under natural conditions, soils in this system age rather slowly. The
pre-dam silts and clays sampled appeared extremely dry, contained little
organic matter, and generally showed little pedogenic development. This
is clearly 1illustrated by the relatively great age of one pre-dam
terrace sample from 1OOfT depth at Mile 198.5R(j which ?howed no signs of
weathering, yet had a -°C age of ca. 450 * 50 years . (A.K. Behrensmeyer
pers. comm. 1985) and a relatively high pH (8.3). In part this retarded
soil development must be attributed to ‘the impermeability of silt and
clays to meteoric water. In August, 1982 precipitation from a hard,
soaking rain was found to percolate at the rate of less than 1.0cm/hour,
and reached only 15cm depth in beach-sand soil.

To address the question of pedogenic trends in post-dam riparian
substrates through time, refer to Table 2.6 and Figures 2.2 and 2.3.
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These data show that the differences between inundated Zone A and non-
jnundated Zone D sites increased among all edaphic parameters between
1981 and 1984, Prior to flooding in 1983, the riverside Zone A
substrates were physically and chemically more similar to the pre-dam
Zone D sediments than they are at present. It is unfortunate that we do
not have samples of Zone A sediments from the late pre-dam or early
post-dam era. Pre-dam Zone A sediments were probably similar but not
identical to present-day Zone D sediments. The pre-dam Zone A sediments
were probably fine-textured and relatively rich in base cations and
perhaps soil nutrients as well. From 1963 to 1981 a significant
decrease in monovalent cation and total cation concentrations occurred,
and possibly a significant increase in %sand developed in Zone A
sediments, relative to Zone D. In 1984 all parameters studied except pH
were significantly correlated with stage, and the significance of those
relationships that were significant in 1981 improved greatly. From
these observations we suggest that the post-dam riparian edaphic system
has changed slowly under a stable flow regime, and changed abruptly with
the re-initiation of extreme discharges in 1983,

Edaphic Changes and Riparian Vegetation

Flooding in 1983 and 1984 altered substrate characteristics in Zones A
and B of the Colorado River riparian corridor by scouring and leaching
base cations, organic matter, and fine particle silts and clays. Prior
to flooding, levels of these substances were generally closer to those
of the pre-dam terraces, and organic matter from root decay and leaf
litter had been accumulating. After 1983 lower concentrations of
exchangeable cations, lower levels of organic matter, and higher
proportions of larger-sized particles were observed, relative to the
substrate surface level, and these changes are generally considered
detrimental to the growth of riparian vegetation.

Analysis of matched photographs conducted by Turner and Karpiscak (1980)
has shown a relatively rapid proliferation of riparian vegetation in
this system from 1963 to 1975. This proliferation has been somewhat
ordered by flooding, with recruitment following subsidence of flood
waters (e.g. Hayden 1976), and subsequent development of community
complexity (e.g. Brian 1982). Invasion of this system by Tamarix in
7one A occurred in the late 1960's and early 1970's. Phillips (in Brian
op. cit.) claimed that the first decade of regulated flow in this system
was characterized by erosion which prevented plant community
development; however, the effects of disturbance 1in 1965 may have
facilitated recruitment in this system. In the present study we found
that dense Tamarix stands are resistant to scouring and retain silt and
clay particles, base cations, and organic matter more effectively than
do the native plant species. Therefore Tamarix is important in this
system where it serves to stabilize the substrate.

Declines in substrate quality will occur with every major flood in this
"system. To maximize development of the terrestrial riparian community,
a stable, non-flooding flow regime would permit the greatest amount of -
pedogenesis. Many of the current beaches in this system formed at about
the 800m°/sec stage as a consequence of prolonged flows greater than
1,100m°/sec from 1983 to 1985, To permit new beaches to undergo
pedogenesis, the flow regime adopted should be one which minimizes bank-
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cutting erosion (e.g. a stable, base-loaded flow or a flow regime with
mild, slow fluctuations) or should not e§ceed a relatively low long-term
mean maximum discharge of less than 800m°/sec. Such a flow regime would
maximize pedogenic development by permitting recolonization by
vegetation, accumulation of organic matter, and would retard leaching of
base cations and fine particles. Choice of a suitable flow regime will
determine substrate evolution and, consequently, riparian vegetational
development in this system.

Conclusions
Several conclusions are drawn from this portion of the study study:

1. Sampling sites that lay within the. inundation zone of the 1983
flooding event were altered by moderate to extreme devegetation,
scouring of the substrate, and in some cases redeposition of fluvial
sediments. R

2. In 1984 this system was characterized by young, unweathered
xerifluventic substrates with moderately high pH, low organic content,
fine silt/sand textures, and base cation ratios of:

Ca2+ >> Mg2+ >> Nat > k*

3. Samples collected in 1984 revealed significant changes in physical
and chemical substrate characteristics, relative to substrate surface
level, as compared to samples collected before flooding in 1981:

a) Substrate pH differences between various cover types in the
inundated zone were more homogenious.

b) Monovalent and, tq a lesser extent, divalent base cation
concentrations (except Mg *) declined significantly in the inundated
zone between years. Cation concentration differences between the
inundated and non-inundated zone became more pronounced following
flooding.

c) The percent burnable organic matter + carbonates declined
significantly in the inundated zone as a consequence of flooding.

d) The percent sand in the inundated zone increased and the
%silt+clay decreased significantly as a result of flooding

4, Correlation of substrate characteristicszwith distance from Glen
Canyon Dam was significant and positive for Ca * concentrations as well
as percent burnable organics + carbonates and percent silt + clay.
These relationships may be attributed to increased scouring near the dam
with redeposition in the lower Grand Canyon and/or the influence of
tributaries in this system.

5. A1l physical and chemical substrate characteristics at 35cm depth
were more strongly correlated with stage in 1984 than in 1981,
reflecting the impact of flooding on riparian substrates. )

6. Analyses of substrate characteristics with respect to depth in the
profile corroborated Scala's (op. cit.) findings that pre-dam sediments
consist of interbedded laminae of fine silts, fine sands, and mixed
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texture substrates. This pattern was significantly altered by scouring
and redeposition in 1983 at numerous sites. Base cation analyses showed
that the "bulges" in concentrations found in pre-dam sediments were
lower and less conspicuous in the profiles of post-1983 sample sites for
all species except k*, which was strongly leached from this system.

7. These changes in physical and chemical substrate characteristics
represent a significant deterioriation in environmental conditions for
surviving and future riparian plant life in the inundation zone. In
particular, the increase in particle size of beach sediments in this
system may lead to increased erosion rates and more rapid desiccation of
the substrate, conditions highly unfavorable to colonizing plants.

8. Among the inundated sites, substrate quality beneath exotic Tamarix
stands was consistently better than that associated with native Salix
exigua stands or open beach sites. Reasons for this include the
following: Tamarix stands typically occupy erosion-resistant pre-dam
silt beds, and Tamarix is more deeply rooted and protects the substrate
from flood-induced scouring better than Salix does.

9. Pedogenesis of riparian substrates is a slow process, one
facilitated by the growth of vegetation and negatively affected by
flooding and other environmental disturbances. Maintenance or

improvement of riparian substrate quality will require concerned,
consistent management in this system.
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TABLE 2.4 : LINEAR REGRESSION EQUATIONS OF. 1984 DEPTH-AVERAGED
. PHYSICAL AND CHEMICAL SUBSTRATE CHARACTERISTICS

AGAINST DISTANCE DOWNSTREAM FROM GLEN CANYON DAM,

USING ZONE A AND B BEACHES.
SOIL RZ VALUE SIGNIFICANCE
PARAMETER REGRESSION EQUATION (ADJ. FOR df) (df)
pH Y = -0.001X + 8.30 0.000 NS (1,7)
Na* (ug/q) Y = 0.268X + 18.5 0.000 NS (1,7)
K™ (ug/q) Y = 0.082X + 13.9 0.025 NS (1,7)
ca?t (ug/q) Y = 2.740X + 1089 0.478 p<0.05 (1,7)
Mgt (ug/g) Y = 0.316X + 172 0.101 NS (1,7)
TOTAL
CATIONS (ug/g) Y = 3.400X + 1293 0.455 p<0.05 (1,7)

* % ORGANIC &

CARBONATES Y = 0.003X + 0.130 0.512 p<0.05 (1,7)
% SAND Y = -0.139X + 103 0.434 p<0.05 (1,7)
9% SILT & CLAY Y = 0.139X + 2.83 0.434  p<0,05 (1,7)
% CLAY Y = 0.006X + 0.40 0.029 NS (1,7)

* 35cm depth only
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TABLE 2.5: LINEAR REGRESSION EQUATIONS OF PHYSICAL AND CHEMICAL
~ SUBSTRATE CHARACTERISTICS AGAINST DISTANCE DOWNSTREAM ‘
FROM GLEN CANYON DAM, USING ZONE A AND B BEACHES IN 3
1981 AND 1984 AT 35CM DEPTH.
RZ VALUE  SIGNIFICANCE )
PARAMETER YEAR  REGRESSION EQUATION  (ADJ. FOR df) (df)
pH 1981 Y = 0.001X + 8.01 0.000 NS (1,6)
1984 Y = -0.002X + 8.20 0.131 NS (1.7)
Na* (ug/g) 1981 Y = 0.514X + 10.8 0.127 NS (1,6)
1984 Y = 0.088X + 9.96 0.232 NS (1.7) .
K" (ug/g) 1981 ¥ = 0.228X + 15.3 0.671 p<0.01(1,6)
1984 Y = 0.071X + 9.05 0.415 p<0.05(1.7)
ca®*(ug/g) 1981 Y = -0.703X + 1542 -  0.000 NS (1,6)
1984 Y = 1.260X + 1142 0.000 NS (1.7)
Mg?*(ug/g) 1981 Y = 0.305X + 183 0.000 NS (1,6)
1984 Y = 0.009X + 183 0.000 NS (1.7)
TOTAL 1981 Y = 2.100X + 1522 0.261 NS (1,6)
CATIONS(ug/g) 1984 Y = 0.580X + 1417 0.099 NS (1.7)
% ORGANIC+ 1981 Y = -0.001X + 1.18 0.000 NS (1,5)
CARBONATES 1981 Y = 0.003X + 0.136 0.513 p<0.05(1,8)
% SAND 1981 Y = -0.097X + 88.8 0.000 NS (1,6)
1984 Y = -0.075X + 102 0.378 p<0.05(1,7)
% SILT+CLAY 1981 Y = 0.097X + 11.3 0.000 NS (1,6)
1984 Y = 0.074X - 1.63 0.374 p<0.05(1,7)
% CLAY 1981* Y = -0.030X + 5.79 0.668 p<0.01 (1,6)
1984 Y = 0.001X + 0.504 0.000 NS (1,8)
°
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TABLE 2.6 : LINEAR REGRESSION EQUATIONS OF PHYSICAL AND CHEMICAL
SUBSTRATE CHARACTERISTICS AGAINST APPROXIMATE STAGE
OF SAMPLE SITE IN 1981 and 1984 AT 35CM DEPTH.
R2 VALUE SIGNIFICANCE
PARAMETER  YEAR  REGRESSION EQUATION (ADJ. FOR df) (df)
pH 1981 Y = -0.001X + 8.1 0.129 p<0.10 (1,15)
P 1984 Y = -0.001X + 8.06 0.115 p<0.10 (1,18)
Na® (ug/g) 1981 Y = 0.119X - 64.5 0.266 p<0.025(1,15)
1984 Y = 0.083X - 55.5 0.378 p<0.005(1,18)
K" (ug/g) 1981 Y = 0.035X - 1.1 0.478 p<0.005(1,15)
1984 Y = 0.030X - 14.1 0.604 p<0.001(1,18)
Ca2+(ug/g) 1981 Y = 0.052X + 1399 0.103 NS (1,15)
1984 Y = 0.113X + 1178 0.253 p<0.025(1,18)
M92+(ug/g) 1981 Y = 0.035X + 184 0.079 NS (1,15)
1984 Y = 0.028X + 169 0.332 p< 0.005(1,18)
TOTAL CAT- 1981 Y = 0.242X + 1518 0.402 p<0.005(1,15)
IONS({ug/g) 1984 Y = 0.254X + 1277 0.515 p<0.001(1,18)
% ORGANIC+ 1981 Y = 0.001X + 1.08 0.000 NS (1,12)
CARBONATES 1984 Y = 0.001X - 0.203 0.565 p< 0.001(1,18)
% SAND 1981 Y = -0.009X + 87.1 0.178 p< 0.05 (1,15)
1984 Y = -0.016X + 107 0.511 p< 0.001(1,18)
% SILT+CLAY 1981 Y = 0.009X + 13.0 0.179 p< 0.10 (1,15)
1984 Y = 0.016X - 7.37 0.512 p< 0.001(1,18)
% CLAY 1981 Y = 0.001X + 3.74 0.000 NS (1,12)
1984 Y = 0.002X - 1.38 0.282 p< 0.01 (1,18)




CHAPTER III: EFFECTS OF FLOODING ON RIPARIAN VEGETATION

Introduction

Flooding 1is the most ubiquitous form of disturbance in riparian
ecosystems. In unregulated stream systems, flooding mechanically
controls riparian plant community development and may initiate
repetitive waves of succession (Loucks 1970; McIntosh 1980), which
result in a "suspended succession" (Campbell and Green 1968).  Odum
(1981) suggested that periodic perturbations result in lower levels of
biological organization (i.e. diversity and complexity of trophic
structure). Catastrophic disturbance Tlowers the "trajectory of
ecological succession” by direct reduction of biomass and diversity,
temporarily returning the ecosystem to an earlier stage of
development. A change in the perturbation regime may change the course
of succession by eliminating some biotic interactions while forcing or
promoting others.

Numerous factors influence flood-related plant mortality. Mortality
varies with plant age and between species, and inundation resistance
increases with plant age (Hosner 1958; Horton et al. 1960; Warren and
Turner 1975; Kozlowski 1984). Prolonged flooding negatively affects
leaf, shoot, cambial and root growth and morphoiogy, and successful
seedling establishment varies widely between plant species following
flooding (Kozlowski 1984). Abiotic factors that influence plant
mortality include water temperature, oxygen depletion and other changes
in inundated soils (Ponnamperuma 1984), duration and discharge level,
and turbidity which reduces light availability for inundated plants.

Discharge regulation (flood control) permits plant life to colonize
streambanks and creates ecologically and recreationally valuable
riparian habitat (Johnson and Jones 1977; Johnson and Carothers 1982;
Johnson et al. 1985); however, flooding events subsequent to discharge
regulation negatively affect riparian plant communities through damage
and mortality of streamside plants. Such has been the case along the
Colorado River corridor in Grand Canyon, Arizona. Little riparian
vegetation existed along the river prior to construction of Glen Canyon
Dam (Turner and Karpiscak 1980). Fronb 1963 to 1982 discharge was
stabilized below approximately about 820m~/sec, providing a new habitat
that was gradually colonized by exotic and native plant species. This
convention was interrupted in 1983, when inflow to Lake Powell exceeded
the storage capacity of Glen Canyon Da% On 29 June, 1983 discharge
from Glen Canyon Dam increased to 2,621m”/sec, sending the highest flow
in post-dam (post-1963) history through the Co]gfado River corridor in
Grand Canyon. Mean discharge remained above_680m~/sec, twice the normal
flow level through 1984, and exceeded 1,270m3/sec in 1985, far above the
pre-established normal flow. This severe and pro]onged flooding has
- exerted significant impacts on the riparian plant commun1ty in the
Colorado River corridor in Grand Canyon.

From the standpoint of the various species of riparian plants in this
system, the flooding events of 1983, 1984, and 1985 were not "natural"
events. These floods consisted of prolonged, constant flows of clear,
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extremely cold water. “Natural" floods in this system are of two
kinds: 1) sediment-laden spring and summer snowmelt discharge that
warmed progressively through the year, and 2) ephemeral, high intensity
tributary floods of warm, sediment-laden water. Type 1 (pre-dam river)
floods scour and drown riverside vegetation, and represent a form of
ecological disturbance to which terrestrial plant species are unable to
adapt. Type 2 floods (flash floods) are usually of sufficiently short
duration to prevent drowning of plants and many native and exotic
species survive such flooding events.

Objectives

By permitting flooding in a system where erratic discharges had been
stabilized for two decades, the operation of Glen Canyon Dam directly
reduced terrestrial riparian vegetation and wildlife community along the
Colorado River in Grand Canyon 1983. In the present study we document
the impact of this flooding event on the riparian plant community in the
Colorado River corridor in Grand Canyon. We posed the following
questions regarding the impacts of flooding in this system:

1) What are the flood-related sources of plant mortality in this
system? : '

2) Do all riparian plant species respond to flooding in a similar
fashion in this system?

3) Do discharge stage, reach type, substrate type, distance from Glen
Canyon Dam, stem density, and/or stem height influence flood-induced
plant mortality?

4) How was plant growth affected by flooding during and after these
discharges? '

5) How do different plant growth and reproductive strategies (e.g.
sexual versus clonal strategies) affect survival and recovery?

6) Did flooding result in increased germination and seedling
establishment in 1984 and 19857

7) Did flooding increase exposure and insolation of the substrate
‘beneath stands of riparian vegetation?

8) Did riparian plant diversity and community structure change as a
result of the 1983 flooding event, and what are the long-range
consequences of such flooding events in this system?

In the following discussion we address these questions from the
perspective of how the operation of Glen Canyon Dam has affected
terrestrial vegetation along the Colorado River in Grand Canyon.
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Methods

An inspection of the river corridor in the fall of 1983 revealed three
sources of flood-induced plant mortality. These were 1) direct removal
of plants by scouring; 2) drowning under prolonged flows; and 3) burial
under redeposited fluvial sediments.

To assess levels of removal, mortality data were collected from several
sources. River-based surveys of the riparian corridor from 1983 through
1985 provided three sets of removal data (Appendix 3.2). The presence
and condition of plants that had been under observation since 1980 were
determined in 1984 following the subsidence of flows >700m3/sec.
Several reaches were censused by counting all shrubs and trees visible
from the river in 1982 and 1984, especially between miles 60-61, miles
166.5-179.5 (for Prosopis only), and miles 196.5-198.0. Nine 10m x 30-
40m study sites, each situated @;th jts long axis parallel to the river
and less than 5m from the 700m”/sec stage were censused. These study
sites were located between miles 43 and 170 (downstream from Lees Ferry)
and were sampled for plant density and species composition in 1982 and
1985. Lastly, a small set of pre-1983 aerial photographs was ground-
truthed in 1984 to ascertain removal of Tamarix in riffle and rapid
reaches where few other data were available. Information gathered from
all sources included plant species, height, and condition, with
independent  stems and distinct clumps considered as single
individuals. The proximity of plants to the river (a measure of the
period of inundation) was determined by dividing the total inundated
area into three floodzones, all of which lay.in Carothers et al. (1979)
Zones 3 agd 4: Zone A = 570m*/sec }o 1,130m3/sec;320ne B = 1,130m~/sec
to 1,700m°/sec; and Zone C = 1,700m°/sec to 2,400m”/sec. Zone D lay in
the non-inundated zone above 2,400m”/sec. Reach type categories
included eddy, straight, riffle, or rapid settings. Substrate types
included silt, sand, mixed sand and cobble, cobble, and bedrock.
Distance downstream from Glen Canyon Dam was recorded from Stevens
(1984). Because g]most all of the post-dam riparian vegetation occurred
below the 1,700m°/sec stage, data on plants larger than the seedling
sizes from the Zones A and B were pooled for analysis of removal.
Removal rates. were averaged by technique to obtain a total removal rate
by species. Chic analyses with the Yates correction for continuity
(Brower and Zar 1977) were used to determine if removal was significant
for each species.

Mortality due to drowning of all perennial riparian species was derived
from several data sets. Mortality was measured on 47 quadrats in 1984,
and 12 of these quadrats were censused again in 1985 (Figure 3.1).
Quadrat sites were selected in the four reach types throughout the river
corridor. Each quadrat was 30m in length and extended to the top of
Zone C. The number and heights of live and dead plants (including
seedlings) of each species were measured in each zone of each quadrat,
and quadrat width was measured. Thus, all plants on more than 3.68 ha
of riparian habitat were examinedd in 1984 in quadrat analyses.
Unflooded Zone D was not an appropriate control area against which to
compare the inundated zones because growing conditions and sources of
mortality were different there. Another set of mortality data was
derived by counting all plants growing along the river in specific
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reaches in 1982 and 1984, including Miles 60 to 61 (left side only),
Mile 166.5 to 179.0 (right side, Prosopis only), Mile 196.0 to 198.0
(right side only), and elsewhere (Appendix 3.2). Mortality data were
also derived from study plot analyses, observations on the survivorship
of plants under observation since 1980, and by ground-truthing a small
set of pre-1983 aerial photographs of the river corridor supplied by the
National Park Service staff at Grand Canyon. Mortality was averaged
across techniqu%f to obtain a mortality rate by species. Data were
analyzed using X¢ statistics, multiple linear regression and analyses of
variance (Snedecor and Cochran 1980). :

The effects of burial were assessed by observation on the condition of
individuals of different plant species throughout the river corridor.
Mortality due to burial by newly deposited beach sediments could not be
distinguished from drowning; however, plant species were observed to
respond differentially to this source of mortality. To assess the
effects of flood-related burial on plant growth we marked one stem on 20
buried and 20 unburied 1living Tamarix plants at Mile 205.0L, and
remeasured marked stems in late June, 1985.

The effects of distance from Glen Canyon Dam, reach type, substrate
type, and stem height on plant mortality due to drowning were assessed
using quadrat data. Analyses of variance of mortality with these
location and position factors were performed using BMDP statistical
programs (Dixon 1983).

Removal of riparian vegetation may increase insolation of beach surfaces
and increased light intensity may, in turn, influence seedling
success. To gain some understanding of flood-related changes in light
intensity in this system we compared light intensity in heavily damaged
versus undamaged stands of Salix exigua (2 pairs) and Tamarix (4
pairs). Light intensity was measured with a Gossen foot-candle meter at
0.85m above the beach surface every 5.0m along a 35m-transect through
uniform stands of vegetation. Light intensity was expressed as the
percentage of ambient light.

To assess changes in vegetation diversity and community structure in
this system, we calculated Shannon and Wiener's H' index of diversity
and Pielou's J, a coefficient of evenness (Brower and Zar 1977):

H' = - P1(10910P1)
J' = H'/logqoS

where p; s the proportion of species i in the sample and S is the
number of species. H' is relatively independent of sample size and
combines abundance and species richness species into a single, relative
measure of diversity. H' varies from 0 for non-diverse comunities to
1.0 for highly diverse commnities. J' is a measure of evenness of
distribution of species in a commnity and varies from 0 for highly
unevenly distributed species to 1.0 when all species are equally
represented. Both of these statistics were calculated using 1984 data
from 6 quadrats in each of 4 reach types for the common riparian
perennial species (n=24). Estimated pre-flood community diversity was
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‘calculated using the number of live and dead stems of each species
divided by the total number of stems of all species (by not correcting
these values for removal we ensured that our. pre-flood estimates were
conservative). Post-1983 community diversity statistics were calculated
using the number of live stems of each species divided by the total
number of live stems of all species. H' and J' values were compared
between years and reach types using Student's t statistics and oneway
analysis of variance.

Results

Plant Mortality Prior to 1983

In general, nearly all plants encountered in Zones A and B were growing
vigorously in 1982, with mortality levels Tless than 5%. Low density
stands of plants revealed low levels of stem mortality levels prior to
1983. For example, mortality levels for Tamarix, Prosopis, and
Baccharis species were 1.9% (n= 494), 2.2% (n=45), and 0.0% (n=448),
respectively in 1982. Relatively high proportions of dead stems were
encountered only in dense stands of Tamarix (38.6% to 44.0%, n=3
stands), Salix exigua (0.94% to 27.4%, mean=7.4% for 6 stands), and
Tessaria (50.8%, n=1), where dead stems were retained for long periods
of time (Appendix 3.2). No dead Baccharis salicifolia or B. emoryi were
seen along the river prior to 1983.

Flood-induced Plant Mortality

The percent mortality due to removal, drowning, and total estimated
mortality of each common riparian plant species are presented in Table
3.2 Data from eddy and straight reaches in Zones A and B were pooled to
produce this table, because most of the post-dam riparian corridor
vegetation occurs in those settings. Estimates of total mortality are
based on combined removal and drowning mortalities. Where removal data
were not available (i.e. for 1less common  species), removal was
considered to be O0; therefore, the total mortality estimates are
conservative.

Removal by Scouring -
Removal data were compiled from several sources and are presented in
Appendix 3.2. These data provided several independent estimates of
removal for the more common species, and estimates of removal were
averaged between techniques to obtain the mean total percent removal for
each species (Table 3.2).

Levels of removal by scouring were significant for most species (p<0.005
and df=1); however, numbers of Salix gooddingii, Prosopis, and Acacia
were not statistically different before and after 1983 (Table 3.2).
Susceptibility to removal varied greatly between species. . Removal
varied from relatively low levels (0-20%) for species with deep tap
roots, such as S. gooddingii, Acacia, Prosopis, and Tamarix, to higher
levels of removal (20-79%) among shallow-rooted species, such as
Baccharis spp. (and undoubtedly Aplopappus acradenius, Brickellia
longifolia, and Gutierrezia spp. although data are lacking for these
Tatter species). The highest levels of stem removal (68-100%) were
found among shallow-rooted, clonal species, such as S. exigua, Tessaria,
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Phragmites, Typha, Scirpus, and probably Aster spinosus. While levels
of ramet (individual stem) removal were extreme. for these species,
clonal survivorship was quite high, except for macrophytic Typha and
Scirpus. Genet (total clone) mortality levels ranged from 6.8% for
Salix exigua to 31.4% for Phragmites. In contrast, clonal macrophytes,
such as scirpus and Typha, that occupied the river's edge prior to 1983,
suffered removal rates of 88.9% to 100%, respectively. A gradient of
survivorship by habitat preference was observed among clonal species,
with macrophytes such as Typha, Scirpus and Phragmites subject to higher
genet mortality than S. exigua at intermediate distances from the pre-
1983 high water line, and highest survivorship among Tessaria clones
which occupied Zones C and D away from the river.

Removal data for Tamarix indicate that a significantly greater
proportion of scouring occurred in Zone A (p<0.005, df=2). Because
Tamarix is extremely well anchored, the trend of higher levels of
removal near the river is probably valid for the other plant species as
well., Overall removal rates of Tamarix were highest in cobble
substrates, especially on cobble islands (exceeding 50%). Lower levels
of removal (21.0%) were found in sand substrates and lowest rates
occurred in boulder and bedrock settings (15.9%). Cobble islands appear
to be highly disturbed substrates by flooding events. Sand is also
readily eroded, but finer, underlying silt beds provide these deep-
rooted plants with a better anchor, and boulder substrates do likewise
(Gary 1963).

Prior to 1983, many large riverside beaches in eddy settings in this
system were occupied by S. exigua, Tessaria, Tamarix and/or Baccharis,
other perennials, herbs, and grasses. All plants on 12 of 15 such
beaches were scoured away, and one of the three remaining beaches was
left with only one Salix stem. The two remaining beaches lay on the
inside of river meanders and were somewhat protected from substrate
erosion. Excavations on four of five previously vegetated beaches
revealed no root structure to at least 1.5m depth; and significant
changes in sediment texture and stratification (Chapter 2) indicate that
beach surface sediments were scoured away and then totally replaced
during the subsidence of high flows. In several cases, the morphology
of beaches redeposited by subsiding floodwaters was remarkably similar

to that prior to the flood.

Lastly, the direction of the current at a given site may contribute to
removal mortality. Anomalously high removal was observed at several
locations, especially islands at Miles 61.0R and 71.5; however, this
factor could not be measured accurately in this study.

Mortality Due to Drowning and Thrashing

Drowning coupied with thrashing was an important source of mortality of
riparian plants subjected to prolonged flows in this system. Results
gathered from quadrats in 1984 are presented in Appendix 3.1, and are
summarized in Table 3.1. On average nearly 40% of all plants remaining
in Zones A and B after flooding in 1983 had drowned (Table 3.2);
however, rates of mortality due to drowning varied significantly between
species (p<0.001, df=13,737). All species except Acacia, S. exigua

genets, and Tessaria genets showed a significant decrease in density due
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to drowning (p<0.005, df=1 for each species). Acacia (20.0%
mortality), Tamarix (28.0%), and several other riparian species were
relatively tolerant of inundation, while Proso%is (49.8%), Baccharis

spp. (64.0% to 79.3%), Aplopappus acredenius (83.2%) and Brickellia

(62.0%) were intolerant of inundation stress. Three of the four species
with deep tap roots suffered relatively low levels of drowning mortality
(Table 3.2). Nearly all xeric-adapted species that had colonized post-
dam beaches from the surrounding desert were intolerant of flooding.
Desert Compositae, such as Dyssodia pentachaeta, Gutierrezia sarothrae,
G. microcarpa, Aplopappus spinosus, Encelia farinosa, and Peucephyllum

schottii suffered moderate to high levels of drowning mortality, as did
Ephedra spp., Larrea and various cacti species.

Another flood-related impact in this system arose from covering of
inundated plants with the aquatic alga, Cladophora. Following
subsidence of high discharges in 1983 and 1984 Tamarix and other
streamside plants were commonly found entirely coated with Cladophora,
especially in Zone A." This "covering effect" was most pronounced from
Glen Canyon Dam through Marble Canyon, but inundated plants and
especially seedlings were found coated with Cladophora throughout the
river corridor. The coating of drift algae dried and hardened,
persisted for weeks to months, and may reduce or inhibit photosynthesis
on affected plants.

Several remarkable cases of inundation tolerance were noted in this
study. An examination was made of a cobble bar above the mouth. of
Parashant Canyon (Mile 198.5R) in mid-November, 1985, which contained
several hundred dead Tamarix stems. Below the 570m°/sec stage 36 3m-
tall Tamarix plants were observed with a small amount of regrowth
foliage. While virtually all individual Tamarix growing in lower Zone A
had perished from drowning or removal, these individuals had survived
continuous submergence of their root crowns for more than 500
consecutive days and nearly continuous submergence for almost 850 days--
far longer than Warren and Turner's (1975) reported maximum survival
period for inundated Tamarix chinensis. Those authors reported that
Tamarix growing in aggradational silt beds at the head of reservoirs

could survive inundation for up to 90 days. The much longer period of

inundation tolerance observed in this study may be attributed to 1) cold
water temperatures which slow cellular metabolic rates; 2) highly
oxygenated water, allowing for adequate respiration; and 3) clear water
which may permit photosynthesis to continue despite inundation. The
root zone may have provided an adequate source of CO2 for these
submerged riverside Tamarix.

Several mesic species also deserve mention with regard to their

tolerance of prolonged inundation. A small clone of the_yellow variety

of Mimulus cardinalis grows at approximately the 1,130m3/sec discharge
stage at Vasey's Paradise (Mile 31.0R). This plant managed to persist
through prolonged inundation for three consecutive years. To our
knowledge, this is the only individual of this race and our observations
in 1985 indicate that it is apparently sterile because it produced no
viable seeds. This unique plant lies in a precariously high impact
setting, and yet has managed to persist. Crimson Mimulus and Adiantum

&
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are common mesic species, and have proven to be tolerant of prolonged
inundation. _ :

The mesic sedge, Cargé near scirpoidea var. curatorium, was observed
growing below the 600m°/sec stage along the river during the drawdown in
October, 1984. This species was found growing in dense beds at several
sites in Marble Canyon and was cloning vigorously. At that time the
clones had been fully submerged for nearly 1.5 years and were
proliferating despite inundation. Clear, as opposed to turbid, water
may allow such facultative macrophytes and highly inundation tolerant
Tamarix to continue to photosynthesize even when fully submerged.

Mortality due to Burial

Tamarix growth at Mile 205.0L was vigorous but highly variable. Plants
that had been buried by sand grew an average of 49.2cm in one year
(n=12, SD=47.87), while non-buried plants grew 50.8cm/yr (n=21,
SD=49.23). Growth rates were not statistically significantly different
between buried and non-buried plants at this site (p>0.90, df=1,31).

In an experiment in 1982 Stevens assessed the responses of Tamarix and
Salix exigua stems less than 3 years in age to simulated burial and
excavation at Mile 43.1L. On August 11 the root crowns of 20 Tamarix
and 20 Salix stems were exposed by excavation to a depth of 30cm to
simulate erosional exposure. Twenty other root crowns of each species
were covered with 30cm of sand to simulate burial. On October 16, 1982,
experimental plants were reexamined. Of the plants which could be
relocated, 5.3% (n=19) of the Tamarix and 5.6% of the Salix had
succumbed to burial. Interestingly, 43.8% (n=16) of the Tamarix
succumbed to exposure, while only 11.8% (n=17) of the Salix died. This
pattern of higher mortality among Tamarix due to exposure, and higher
overall mortality due to both causes combined, was observed following
flooding in this system in 1984 and 1985.

While mortality resulting from burial could not be clearly distinguished
from drowning, it was clear that non-clonal species were far more
susceptible to this form of mortality than were clonal species. Tamarix
were the most resistant non-clonal species and those that had been
buried under redeposited sediments in 1983 survived a year or more if
even a small portion of their canopy remained exposed to sunlight. This
was observed at Mile 23.0L, 48.4R, 64.8R, 66.4L, 136.5L, 136.7L, 175.0R,
205.0L, and elsewhere; however, plants at 2 sites (136.7L and 175.0R)
succumbed to burial in 1985. A11 four Baccharis species appeared
uniformly stressed by burial, and nearly all Baccharis that had been
covered to more than half their height by redeposited sediments were
dead in 1984, Other plants that grow in clumps, such as Prosopis,
Acacia, Brickellia, and xeric adapted Encelia and Gutierrezia showed
similar negative responses to burial.

Clonal species showed a vigorous growth respose to burial. In all cases
observed, Salix exigqua responded to burial with rapid colonization of
newly deposited sediment beds. This was observed at miles 2.2L, 31.6R,
37.3L, 41.4R, 44.6L, 50.2R, 51.2L, 51.3L, 51.7LR (x2), 61.3L, 64.9R,
71.2R, 76.7L, 98.1R, 120.0R, 122.1R, and 142.5R. At Mile 122.1R, S.

exigua stems that had been entirely buried under 2m of new sand for a
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full year and then re-exposed by erosion, quickly produced new leaves
and recovered. In 1985 it was observed that S. exigua dominated much of
the heavily vegetated portions of the river bank from Mile 41 to Mile 70
where Tamarix had previously existed. This same response of vigourous
growth following burial was observed for Tessaria throughout the river
corridor, including sites at miles 40.9R, 43.5L, 43.6L, 67.5R, 131.9R,
164.5R, 173.0R, 185.5R, 186.0L, 207.7L, 207.9L and elsewhere. Where
Phragmites australis, Equisetum spp. and Alhagi camelorum persisted,
they too showed a vigorous regrowth response to burial. Lastly, Aster

spinosus showed extremely vigorous regrowth following burial: a I6m x

30m quadrat of new sand at Mile 139.0R was almost entirely covered by
spiny aster by June, 1984, and this species was recolonizing vigorously
in most quadrats censused in 1984 and 1985.

Factors Influencing Mortality due to Drowning

The influence of plant height, distance from Glen Canyon Dam, reach
type, substrate type, and floodzone (period of inundation) on levels of
mortality due to drowning are presented in Figures 3.2A to 3.2E.
Floodstage was most strongly and significantly correlated with mortality
due to drowning (p<0.001, df=2,748). A total of 49.4% of all plants
remaining in Zone A drowned, 26.2% drowned in Zone B, and 17.7% drowned
in Zone C (Figure 3.2B). Data for Tamarix by itself also showed that
mortality attributed to drowning was strongly correlated with floodstage
(p<0.005, df=2,168). While some mortality of remaining stems must be
attributed to battering and stripping of cambial layers, especially on
submerged cobble bars, a large proportion of the mortality occurred in
relatively quiet reaches where drowning is undoubtedly the primary
source of mortality of the remaining plants.

Drowning mortality varied significantly between the five substrate types
(p<0.01, df=3,747), with lowest mortality on bedrock substrates (23.2%),
moderate mortality in silt, sand, and sand-cobble mixed substrates
(30.6% to 31.2%), and highest mortality on cobble substrates (53.8%), as
illustrated in Figure 3.2C.

Two-way analysis of variance of the mortality due to drowning of all
species was conducted for floodstage and substrate types. This analysis
showed the highest level of mortality (68.4%) occurred in cobble
substrates in Zone A. This trend is further corroborated with data from
cobble islands near miles 53 and 73, which had mean removal rates of
52.3% for Tamarix and 93.7% mortality of remaining stems.

Reach types (eddy, straight, riffle or rapid reaches) are measures of
retative current velocity and reach type was shown to significantly
increase drowning mortality (Figure 3.2A). Reach type s
intercorrelated with substrate type in this system. For example, sand
or cobble substrates occur in eddy or riffle reaches, respectively.
Two-way analysis of variance using substrate type and reach type showed
that drowning mortality decreased in sand substrates as current velocity
increased, but mortality increased with velocity in cobble substrates.

Other factors which may influence plant mortality include distance from
Glen Canyon Dam, plant height, and stem density. No significant
relationship between river section and drowning mortality could be

%
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discerned from data with all floodzones pooled (Figure 3.2E). Narrow
reaches with little talus slope development are found in several reaches
and seem to have sustained extreme levels of mortality. In such reaches
from Miles 12 to 30 and Miles 144 to 164 1little if any riparian
vegetation survived below the 1,100m°/sec discharge stage. Analysis of
variance showed that drowning mortality was negatively correlated with
Tamarix plant height (R2=O.236, p<.001, df=9,220). The percent
variation in Tamarix mortality explained by reach type, floodstage,
substrate, stem density, and distance from Glen Canyon Dam was greatesE
in plants 3m or more in height (R2=41.2%, p<0.004, df=8,40) and R“
values decreased progressively as lower height classes were included in
the analysis. Stem density, a factor that may reduce removal mortality,
was not shown to significantly influence rates of drowning.

Plant Growth and Flooding

Growth was measured on Tamarix growing in the 3 floodzones at mile 54.0R
in June of 1984 and 1985. Thirty stems were marked on 10 plants growing
in Zone A, Zone B, and Zone D in June, 1984 and these stems were
remeasured in June, 1985. This analysis reiterated Stevens' (1985)
findings that shoot mortality is extremely high in Tamarix as, on
average, shoots marked in 1984 lost 12.4cm of stem length in all three
zones. Zone A stems lost an average of 19.7cm of shoot (n=18) and Zone
D plants lost an average of 15.0cm of shoot (n=29), while Zone B plants
lost only an average of 6.lcm growth/shoot. Duncan's multiple range
test showed that losses of shoot growth were not significantly different
between zones. These losses were attributed to unexplained causes in
Zone B and D, and to flood-related mechanical damage in Zone A.

In contrast, growth rates of Salix exigua stems at Mile 64.8 showed a
mean stem increase of 99.2cm/stem (n=17, SE=39.29). Many of the marked
willow stems were removed by beavers, limiting our final sample size.
Differences between male and female growth rates were nonsignificant at
this site.

Effects of Continued Flooding in 1984 and 1985 _

Prolonged, above average discharges were released in this system in 1984
and 1985, and the effects of continued flooding on adult plants and
germination success were of interest in this study. Based on quadrat
data for all species and height classes above 1.0m in 1984 and 1985,
numbers of damaged and dead adult plants rose slightly in 1985, while
numbers of all live plants increased dramatically in 1985 (Figures 3.3A
and B). This increase was due to recruitment of 1984 seedlings which
entered the greater-than-1.0m height class in 1985, The same pattern
was observed in Tamarix alone in 1985, a species that dominates the
riparian flora. Total numbers of seedlings nearly doubled on 12
quadrats between 1984 and 1985 (Figure 3.3C and D). In sum, these
results suggest that flooding in 1984 and 1985 continued to damage
and/or kill remaining adult plants, but that -germination and
establishment has been successful in the riparian corridor.

Colonization
Flooding is believed to promote germination and colonization of riparian
plant species in this system (Hayden unpublished 1976).  Following
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f1ooding in 1980, mean seedling densities of mixed species reached
2,921/m* on six 1.0m“ ‘plots on previously uncolonized beaches. In
September of 1983 dense beds of Tamarix seedlings were observed beneath
the canopies of both Tamarix study sites that had been inundated by
floodwaters. This was the first colonization event observed at these
sites in 5 years. Seedling densities ranged from 4.5/m2 to 330/m2, with
the higher germination taking place on a thin silt bed that had been
deposited by tributary flooding. No Tamarix seedlings have ever been
observed to germinate beneath the canopy of the Tamarix study site that
was not inundated in 1983. ,

Analysis of quadrat data revealed that levels of colonization varied
significantly between terrestrial plant species (Table 3.2). Tamarix
seedlings were 5 times more abundant than_seedlings of any other species
in 1984, At a mean density of 0.003/m2, Acacia seedlings were three
times as abundant as Prosopis seedlings and, as both have relatively
high survivorship, Acacia may become a more conspicuous element of the
new riparian vegetation. All clenal plant species produced a vigorous
growth of new shoots. Rapid invasion of new beach deposits was observed
among S. exigua, Tessaria, Phragmites, Alhagi, and Aster spinosus.
Gutierezzia spp. and Dyssodia seedlings were the only talus .slope
species to re-colonize the post-flood beaches in abundance, and Encelia
farinosa seedlings were common. Agave utahensis seedling densities were
significantly higher in Floodzone B than in other zones at some sites in
Marble Canyon, and this species demonstrated a rapid and extensive
colonization response to flooding. No seedling Ephedra spp. were
encountered, and this species was relatively common prior to 1983 in
Zone B. Recruitment may compensate for the loss of adult plants in some
of these species. '

Colonization of newly deposited beaches by annual and herbaceous plants
was observed in 1984 and 1985. The most common species on new beaches
was the annual composite, Dicortia. Chorispermum nitidum, a
chenopodiaceous species was rare in this system prior to 1983. In
September of 1983 it was observed throughout the river corridor, and was
evidently distributed by flooding. Polypogon monspeliensis and
Distichlis spicata, both halophilic grasses; have become more abundant
throughout the river corridor, while densities of other grasses (e.g.
Sporobolus giganteus, Muhlenberghia spp. and Bromus marginatus) appear
to have been reduced. The submergent macrophyte, Elodea sp., was
observed growing in dense beds in upper Marble Canyon in October,
1985, Prior to 1983 this species was rare along the river but now
appears to be well-established in the niche formerly dominated by
Cladophora. A 1list of the common plants of the riparian corridor
observed during this study is provided in Appendix 3.3.

Light Intensity

Light intensity was significantly greater beneath flood-damaged stands
of both Salix exigqua and Tamarix as compared to undamaged stands of
these two plant species (p < 0.001, df = 1,68). Flood-damaged Salix

stands admitted an average of 52.2% of the ambient 1ight while undamaged
stands admitted only 11.7% of the ambient 1light (p < 0.001, df =
1,22). Damaged Tamarix stands admitted 33.6% of the ambient light and
undamaged Tamarix stands admitted only 6.3% of the ambient 1light.




49

Significantly more ambient 1light reached the ground surface beneath
Salix ' stands. than beneath Tamarix stands (p = 0.024, df = 1,68).
Insolation affects substrate temperature and drying rate, and may
thereby affect seedling success.

Changes in Diversity and Community Structure

Changes 1in species diversity were estimated using Shannon-Weaver H'
index of diversity for pre-1983 and post-1983 stem counts on 24
quadrats. Table 3.3 shows a slight but highly significant overall
decline in species diversity in this system as a result of flooding. H'
decreased from 0.478 (n = 24, SE = 0.033) before 1983 to 0.445 (n = 24,
SE = 0.034) in 1984 (p = 0.004, df = 23). Oneway analysis of variance
with Duncan's multiple range test for H' by reach type showed similar
but nonsignificant trends in difference between reach types before 1983
and in 1984. Both before and after 1984, diversity was lowest in eddy
reaches, intermediate in straight and rapid reaches, and highest in
riffle settings. Nonsignificant trends in these data suggest a pattern
of dominance by fewer species on beaches, and higher diversity in the
more ecologically disturbed cobble bar/riffle settings.

Change from estimated pre-flood to post-flood plant community structure
was evaluated using J', an index of the evenness of species
distributions. Evenness decreased slightly but significantly after
flooding in this system (Table 3.3). Mean pre-flood evenness (J' =
0.560, SE = 0.036) was significantly higher than post-flood evenness (J'
= 0,517, SD = 0.033) at p = 0.006 (df = 23). Student's t-test analyses
of changes in J' by reach type showed that evenness in straight and
riffle reaches declined significantly after flooding (p =0.037 and
0.044, respectively; df = 5), while J' values did not vary significantly
between years in eddy and rapid reaches. These results indicate that
differential flood-induced mortality changed the riparian plant
community structure slightly but significantly in this system.
Differential, flood-induced recruitment is likely to exert further
changes on community structure in this system, and those changes are
currently under study by one of us (Waring).

Discussion

The effects of flooding on riparian vegetation in this system were
complex. High djscharges killed more than 50% of the riparian plants
below the 1,700m°/sec stage by direct removal, drowning and/or burial.
Virtually all riparian plant species along the Colorado River in Grand
Canyon were highly susceptible to flooding stress; however, mortality
rates varied greatly between species. Shallow-rooted Baccharis spp.,
Brickellia longifolia, and Aplopappus acradenius suffered higher levels
of drowning mortality than did species with deep tap-roots, such as
Salix gooddingii, Tamarix chinensis, Acacia greggii, and Prosopis
glandulosa. Despite high Tevels of areal loss among several common
clonal species (Phragmites communis, Salix exigua, and Tessaria
sericea), ramets of most clones persisted, and overall clonal mortality
rates were low. Xeric-adapted plant species, such as Ephedra spp.,
various cacti, Larrea tridentata, and Encelia farinosa, that had

colonized riparian beaches from the surrounding desert were intolerant




50

of 1inundation and suffered high levels of mortality. Both species
diversity and community structure (evenness) of the riparian plant
community declined slightly but significantly as a result of flooding in
1983. Inundation did not result in a loss of plant species from this
system, as far as we were able to determine, although Baccharis spp. and
several species suffered extreme]y high levels of mortality in some
reaches. The range of S. exiqua apparently remained unchanged with a
few new clones observed Tn the Tower Canyon.

The duration (period) and magnitude (discharge stage) of flooding were
factors that most influenced plant mortality. Plants growing at lower
discharge stages suffered the highest levels of removal and drowning due
to a longer period of submergence in swifter, more turbulent currents.
Plants presently occupying the riparian corridor in this system are
shrub and small tree species that are adapted to withstand short periods
of flooding, such as flashfloods. Both the Havasu Creek and Tlower
Diamond Creek drainages were subject to exceptionally large (>ten-year
interval) flashfloods in 1984, yet a high percentage of the riparian
plants, especially Baccharis spp. and Brickellia, survived and quickly
recovered from those floods, even though the tributary vegetation was
subject to far greater turbulance than was the riverside vegetation
during the 1983 flood. This observation suggests that mortality of some
native species may be influenced more by the period of flooding than by
the magnitude of flooding; however, this observation will require
rigorous testing before it can be verified and used in management.

Flooding promoted increased germination of many riparian species,
especially Tamarix, in 1984 and 1985. The structure of this plant
community was altered by differential flood-induced mortality of adult
plants, and the community will continue to change through time as
seedlings established in 1984 and 1985 mature and come to dominance.
Will Tamarix continue to dominate the riparian corridor, or will altered
substrate conditions prevent successful establishment? It will also be
interesting to see if Acacia becomes dominant over Prosopis through
time, because Prosopis is present]y firmly established on the pre-dam
terraces. Flooding resulted in increased exposure of the substrate
beneath stands of Tamarix and Salix exigua and this exposure may have
two effects. Increased Tight may allow other plant species to invade
these dense stands, which appear light limited (especially in the case
of Tamarix). Increased light may also increase surface temperature and
increase the desiccation rate of the substrate, thereby negatively
affecting seedlings. Stevens (unpublished 1985) suggested that moderate
shading of the substrate beneath S. exigua stands facilitated
establishment of numerous understory species, while dense Tamarix stands
exerted inhibitory effects on establishment of understory species.

Larger plants are generally more tolerant of flooding (Kozlowski
1984). For example, the few large Salix goodinggii trees along the
river had far higher survivorship than did Tamarix or other small tree
species. Substrate changes, erosion, herbivory by beavers, and the
difficulties of seedling establishment have promoted the proliferation
of shrub and small tree species over larger native trees, such as
Populus fremontii, Salix gooddingii, and Fraxinus pennsylvanica in this
system. Populus and Salix gooddingii existed in the riparian zone prior
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to 1963 (Turner and Karpiscak 1980) and could survive there now. With
special efforts these species could reintroduced; otherwise, this system
may continue to be dominated by fast-growing shrubs which, by their
small size, are more susceptible to flood-induced removal and
drowning. A cottonwood and willow planting program could be conducted
inexpensively in the Grand Canyon using volunteer labor, and would make
a major contribution to avian species diversity and recreational quality
in this system.

Several other ecological trends bear consideration in the appropriate
management of this system. When a normal flow regime has been
established, riparian vegetation will colonize the edge of the normal
discharge stage. Riparian vegetation will become increasingly profuse
until it is once again disturbed. Long-term stability of discharges
would encourage development of the riparian plant community, while
erratic high releases, such as occurred in 1983, retard or reduce plant
community development.

While extreme flooding is detrimental to this system, a rare, low-
magnitude, short-duration flood will promote seedling establishment.
Riparian plant communities in this system have, in the past, tended to
develop as monospecific stands, for as yet wundetermined reasons.
Seedling establishment 1is brought- about by flooding and the timing of
flooding could be used to selectively deter establishment by exotic
species. and simultaneously increase the -establishment of native
species. For example, Tamarix flowers heavily from April through June,
and its seeds last only a few weeks in the wild (Horton et al. 1960;
Stevens unpublished 1985). In contrast, native plant species, including
Salix spp., Prosopis, Acacia, and Baccharis spp. commonly set seed from
July through September. By delaying flooding until July or August,
Tamarix germination could be reduced and germination by native species
could be facilitated. To promote seedling establishment, rare, gbove-
normal floods in this system need not exceed approximately 1,200m“/sec,
need not last more than approximately two weeks, and may need to be
repeated two consecutive years out of, for example, every seven to ten
years, to be determined by ongoing studies of this system.

Continued disruption by flooding has had a significant impact on the
Colorado River corridor in Grand Canyon. The development of dense
riparian vegetation is to be expected downstream from large impoundments
and, while not natural, these anthropogenic riparian ecosystems are of
considerable biological and recreational value. The fate of post-dam
riparian zone vegetation in Grand Canyuon now lies wholly in the hands
of the Bureau of Reclamation and the National Park Service.
Responsibility for appropriate and intentional management must be
quickly assumed in order to preserve and extend the 1life of this
ecosystem.
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Conclusions
The following conclusions are drawn from this portion of the study:

1. Record post-dam flooding in 1983 in the Colorado River corridor
downstream from Glen Canyon Dam constituted a significant disturbance to
the riparian ecosystem, reducing the total number of individual riparian
plants in Zones A and B by more than 50%. Sources of mortality included
removal by scouring, drowning, and burial under redeposited fluvial
sediments. '

2. Various species of riparian plants responded differently to this
disturbance event, depending on plant architecture, inundation
tolerance, and burial tolerance:

a) Tree-forming species with deep tap roots (e.g. Salix
goodinggii, Prosopis, Acacia, and Tamarix) were more resistant to
removal by scouring, as compared to clonal species (e.g. Salix
exigua and Tessaria sericea) or other shallow-rooted species
(Baccharis, Aplopappus, Brickellia, etc.).

b) Drowning accounted for nearly 40% of the observed mortality.
Salix, Acacia, Tamarix, and Tessaria were relatively resistant. to
inundation, while Prosopis, Baccharis, Brickellia, Aplopappus, and
xeric-adapted species were i11 adapted to inundation stress.

c) Species tolerant of burial included Tamarix and clonal
Equisetum, Phragmites, Salix, Alhagi, Aster, and Tessaria, while
those intolerant of burial included species which grew as clumps
(Prosopis, Acacia, Baccharis, Brickellia) and xeric-adapted
species).

3. Plant mortality was strongly correlated with proximity to the river
(stage), with more than 49% mortality in Zone A, 26% mortality in Zone B
and nearly 18% mortality in Zone C. )

4. Plant mortality varied according to substrate type. Mortality was
highest on cobble substrates, moderate on sand and mixed sand-cobble
substrates, and lowest on bedrock. Mortality was also positively
correlated with current velocity.

5. Both Salix and Tamarix were capable of rapid regrowth, but Salix
grew faster than Tamarix in some settings.

6. Post-flooding clonal reproduction in Salix exigua and Tessaria was
vigorous and these species rapidly colonized new beach sediments in
several reaches. Sexually reproducing Tamarix and other species have
‘been slower to recolonize habitat lost through flooding disturbance.

7. Community diversity and structure (evenness) declined slightly but
significantly due to the disproportionately great reduction in Baccharis
densities as a result of flooding in 1983. Apparently no plant species
were lost from the river corridor because of the flooding event.

8. Flooding stimulated germination in this system and exposed the
substrate beneath stands of Tamarix and S. exigua to higher levels of
insolation. Flooding in 1983 and subsequently resulted in widespread
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germination of several riparian plant species, particularly Tamarix and,
to a lesser extent, Baccharis and Brickellia. Seedlings of common
clonal species, such as Salix exigua and Tessaria, were not found.

9. Careful management of discharge might be used to shift the dominance
of Tamarix in this system in favor of native plant species.
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SUMMARY OF APPENDIX 3.1

TABLE 3.1 :  QUADRAT DATA
ON DROWNING MORTALITY BY PLANT SPECIES
MEAN MEAN MEAN MEAN
%*DROWNED IN %DROWNED 1IN %DROWNED IN TOTAL %
SPECIES ZONE A ZONE B ZONE C DROWNED
Tach 31.69 6.98 0.00 19.74
frequency = 95 72 11 178
Saex 21.36 10.65 33.33 17 .06
frequency 20 21 3 44
Tese 86.13 10.79 9.06 28.84
frequency 15 29 17 61
Basp 68.84 33.10 27 .50 53.11
frequency 41 - 22 8 71
Basr 79.33 59.33 23.15 59,77
frequency 23 24 12 59
Basg 100.00 25.14 3.13 24 .04
frequency 1 7 4 12
Prgl 79.17 29.90 0.00 36.46
frequency 12 17 11 40
Acgr 0.00 12.50 0.00 5.97
frequency o1 21 22 44
Brin 70.50 61.67 32.63 56.00
frequency 10 21 13 44
Haac 100.00 76.74 23.86 47 .86
frequency 1 9 13 23
Assp 18.79 19.09 22.81 20.36
frequency - 11 27 21 59
Gusp 25.63 42 .04 29.20 33.74
frequency 6 19 24 49
Other Riparian
Species . 31.11 0.61 25.00 18.47
Other Talus
Spp. 100.0 36.24 21.69 32.99
frequency 3 25 25 53
TOTAL %DROWNED 49.37 26.17 17.66 29.23
frequency 244 319 188 751
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TABLE 3.3: FLOOD-INDUCED CHANGES IN PLANT SPECIES DIVERSITY
(H') AND EVENNESS (J') IN THE COLORADO RIVER
CORRIDOR, GRAND CANYON. DATA POOLED FOR 24
INUNDATED SITES.
DIVERSITY EVENNESS
REACH MEAN H' MEAN J°
TYPE YEAR (N = 6) p (N = 6) P
Eddy Pre-1983 0.356 0.435
SE 0.060 NS 0.075 NS
1984 0.326 0.401
SE 0.057 0.074
Straight Pre-1983 0.493 '0.579
SE 0.077 0.026 0.073 0.037
1984 0.420 0.480
SE 0.092 0.102
Riffle Pre-1983 0.592 0.654
SE 0.024 0.040 0.072 0.044
1984 0.561 0.620
'SE 0.022 0.062
Rapid Pre-1983 0.471 0.570
SE 0.067 NS 0.057 NS
1984 0.472 0.569
SE 0.060 0.043
TOTAL Pre-1983 0.478 (n = 24) - 0.560 (n =24)
SE 0.033 0.004 0.033 0.006
1984 0.445 (n =24) (df = 23) 0.517 (df = 23) .

SE " 0.034 : 0.036




CHAPTER IV: EFFECTS OF FLOODING ON HERBIVOROUS INVERTEBRATE
POPULATIONS, WITH OBSERVATIONS ON TROPHIC RELATIONSHIPS
IN THE COLORADO RIVER RIPARIAN ECOSYSTEM IN GRAND CANYON

Introduction

Regulation of the Colorado River's flow in Grand Canyon led to a
dramatic increase in riparian vegetation (Turner and Karpiscak 1980),
and to marked increases in avian and terrestrial vertebrate populations
(Carothers and Aitchison 1976; Brown 1986 in press). Equally dramatic
but less thoroughly appreciated have been post-dam increases in insect
populations. Stevens (1976a) recorded the presence of several thousand
terrestrial invertebrate species from the riparian corridor, in nearly
260 families of arthropods. He found the riparian invertebrate fauna in
Grand Canyon to be dominated by terrestrial Diptera (Calliphoridae,
Sarcophagidae, Tachinidae, etc.), adult forms of aquatic Diptera
(especially Chironomidae), herbivorous insects (especially Cicadidae,
Cicadellidae, Aphididae, Psyllidae, Miridae, other Heteroptera,
Coleoptera, and Lepidoptera), ground-dwelling forms (Arachnida,
Scorpionida, Collembola, and Coleoptera), and predatory Hymenoptera
(especially Formicidae, Pompilidae, and Sphecidae). The ecological
roles these taxa play in riparian trophic structure and ecosystem
function has not been fully explored, although these invertebrates serve
as pollinators, regulate populations of other invertebrates, and provide
resources for many terrestrial and aquatic vertebrates. Invertebrates
are difficult to sample and identify, and invertebrate population
dynamics require intensive sampling over long periods of time. These
constraints have limited the analysis of invertebrate dynamics in
ecosystems research.

Stevens (1976b) made several observations on the ecology and trophic
relationships of terrestrial invertebrates in the Colorado River
riparian corridor in Grand Canyon. Post-dam terrestrial insect
populations were far more diverse and abundant in the riparian zone than
in the surrounding desert environment. Exotic plant species, such as
Tamarix, Melilotus and Alhagi, supported a density and biomass-of insect
Tife equal to or higher than that found on native plant species,
particularly while these species were blooming. With the exception of
chironomid midges and simuliid gnats, which were abundant, few insect
taxa occupied the Colorado River itself.

In 1985 Stevens (unpublished) reported on the population dynamics of
phytophagous invertebrates associated with Tamarix chinensis and Salix
exigua. In that study he found: (1) non-blooming Tamarix supported a
Tow diversity of phytophagous insects, strongly dominated by Opsius
stactogalus (Cicadellidae); (2) native S. exigua, which is rapidly
expanding its range in this system (Brian unpublished 1982), supported a
far greater diversity of phytophagous cicadellids, mirids, psyllids,
aphids, and other phytophagous insects than did Tamarix; (3) despite the
great difference in .species richness on these two plant species, they
supported an approximately equivalent biomass of phytophagous insects
during "normal" discharge years; (4) both plant species were subject to
outbreaks of phytophagous insects in 1980, a year characterized by
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higher-than-normal flows; (5) the roots of both plant species were fed
upon by the Apache cicada (Diceroprocta apache), but contrary to the
~ findings of Glinski and Ohmart (1984), S. exigua shoots were preferred
over Tamarix shoots as oviposition sites; and (6) beavers generally
preferred S. exigua to Tamarix and occasionally harvested entire willow
clones (beavers harvested Tamarix more frequently in the lower reaches
of Grand Canyon). Furthermore, he suggested that invertebrate herbivory
was not a mechanism of riparian plant succession in this system except
perhaps during outbreak (flood) years when Opsius populations on Tamarix
reached high levels. He noted that flooding in 1980 stimulated
germination but that successful seedling establishment by Tamarix or S.
exigua was extremely rare in this system, and thus any dispersal
mechanism, such as herbivory by beavers, that favored one plant species
over the other could lead to a successional replacement.

Objectives

In this study we examined the responses of invertebrate populations,
especially those of chironomid midges and the cicadellid, Opsius
stactogalus, to €looding in Grand Canyon. We asked the following
questions: ’

1. Did flooding in 1983 affect phytophagous insect diversity on Tamarix
chinensis or Salix exigua?

2. Did phytophagous insect community similarity change as a result of
flooding?

3. Did the impact of flooding on inverterate herbivore populations vary
with distance from Glen Canyon Dam?

4. How do flood-induced changes in. invertebrate populations such as
cicadellids, cicadids and chironomid midges, affect higher trophic
levels in this system? .

Methods

To address the issue of how invertebrate populations responded to
flooding we sampled several 10m x 30m Tamarix sites and Salix exigua
sites studied by Stevens from 1980 to 1983 (Figure 3.1). These study
sites were established in pure, even stands of vegetation and were
undisturbed by river recreationists. Tamarix sites included 0.1R, Tl
(Mile 43.5L), T2 (Mile 48.4R), Mile 143.2R, T3 (Mile 169.5R), and T4
(Mile 205.0L). T1 and T2 were moderately damaged by flooding from 1983
to 1985, while most of T3 lay above Zone B. Tamarix sites Tl, T2, and
T3 were sampled three times each in the summers of 1984 and 1985, with
Tl and T2 also sampled in October, 1984. Other Tamarix sites were
sampled only in August, 1984. The S. exigua sites used in this research
included: Mile 1.2R; S1 (Mile 43.1R); S2 (the only one of Stevens'
original six Salix exigua study sites that remained intact after 1983
and the site used in this study, Mile 50.2R); S3 (64.8R); S3.5 (122.2R);
and 133.5R. The S$2 site was sampled four times in 1984 and three times
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in 1985, while the other Salix sites were sampled only in 1984. To
address the effects of distance from Glen Canyon Dam on herbivorous
insect populations, samples from 5 stands of Tamarix and 5 stands of S.
exigua were compared in August, 1984.

Collection methods were those of Stevens (unpublished 1985). At each
site fifty 2m sweeps were made in vegetation using a 30cm diameter cloth
insect net. Invertebrates were sampled in full sunlight to maximize the
sample size. Invertebrate samples were collected and killed using ethyl
acetate and samples were returned to the laboratory for analysis.
Specimens were identified to species, counted, and classified by guild
as herbivores, predators, parasitoids, or incidentally-occurring
species. Specimens were sent to the U. S. Department of Agriculture
Insect Identification and Beneficial Insect Introduction Laboratory in
Beltsville, Maryland for verification of identification.

Invertebrate data were compared and contrasted using t-tests and
analyses of variance (Snedecor and Cochran, 1980). To compare patterns
in phytophagous herbivore community stucture and similarity before and
after flooding on S. exigqua and Tamarix we calculated Pielou's J', as
described in Chapter 3, and Stander's (1970) index of community
similarity:

2 p?:'D-;:a

( §:pij2%@( 2:Pinz)l/2

SIMI =

where Py 5 and p;, are the proportions of species i in samples j and n,
respect19e1y. fhis statistic varies from 0 for entirely dissimilar
communitites to 1.0 for identical communities. It incorportates both
species richness and evenness and is relatively independent of sample
size (Sullivan 1975).

Observations on the trophic dynamics of fluvial and riparian components
of this ecosystem were made in the field, and a general scheme of
ecological interactions was developed from these observations.

Results

The present study added 10 new species to the list of phytophagous
invertebrates associated with Tamarix in the United States, and
identified for the first time 13 species of herbivores that feed on S.

exigua. Appendix 4.2A and B provide a complete list of the invertebrate
species collected from Salix in Grand Canyon, and from Tamarix in Grand

Canyon and elsewhere in the United States (Stevens unpublished 1985).
Such host records are important as phytophagous insect populations may
reach outbreak proportions and their contribution to the resource base
for higher trophic levels in this system may depend on the discharge
regime. Appendix 4.1 lists the invertebrate collection data gathered
during the course of this study, and is summarized in Figures 4.1
through 4.6.




Salix exigua Herbivores

The invertebrate herbivore fauna associated with Salix exigua consisted
of numerous heteropteran species, .especially cicadellids and mirids
(Figure 4.1), and this willow species also supports a great diversity of
parasitoid species. With a single exception, the herbivore community on
S. exigua remained basically unchanged following flooding: elevated
populations of the chrysomelid, Disonycha alternata (Illiger), were
observed feeding on S. exigua throughout its range along the river in
1984 and 1985. Examination of exhaustive collecting data from S. exigua
stands prior to 1983 (Stevens- 1976, 1985) showed this leaf-feeding
beetle was not present before flooding. Outbreak populations
of Disonycha were also observed on vigorously growing stands of Aster
spinosus in Marble Canyon in 1985.

Tamarix chinensis Herbivores

The invertebrate herbivore guild on Tamarix 1is depauperate and is
dominated by Opsius stactogalus Fieber, a host-specific, exotic
Teafhopper (Liesner 1971; Watt et al. 1976; Stevens unpublished 1985;
Table 4.2B). The small number of Tamarix herbivores may be attributable
to the taxonomic novelty, anti-herbivore biochemistry, and the
relatively short period of time Tamarix has been present in the
system. Opsius populations reached outbreak proportions in 1980 and
1984, years of moderately high discharges (Figure 4.2A). Opsius
populations peaked in mid- and late-summer following the subsidence of
floodwaters in those years. In 1984 populations of an Opsius egqg
parasitoid believed to be Barypolynema saga Girault (Mymaridae) reached
outbreak proportions as well. This egg parasitoid may exert. some
control over Opsius populations, but the extent of this control is not
known. If Ggs1us are consumed by terrestrial vertebrates in this
ecosystem their populations may provide a substantial food resource in
years when resource availability is otherwise reduced by flooding.

In addition to Qpsius stactogalus, other herbivores were found
associated with Tamarix. The armored scale, Chionaspis etrusca Leonardi
(Diaspididae) had been collected by Stevens (1985) from 1980 to 1982 at
Mile 169.5R on Tamarix growing on pre-dam terraces. These plants
appeared moisture stressed and supported few other herbivores.
Chionaspis outbreaks occurred in 1981 and 1982 at this site, and
populations of the scate-feeding coccinellid, Rhyzobius Tophanthae
(Blaisdell) also increased there. Chionaspis has been collected on
Tamarix at numerous localities in the Southwest (McKenzie 1956; Liesner
1971) and is a European exotic, introduced along with its host as early
as 1908. In 1984, Tamarix at Mile 139.0R were heavily infested with
Chionaspis, and this was the furthest upstream we have observed this
scale insect. The affected plants appeared stressed by burial under
redeposited sediments. In August, 1985 much of that redeposited
sediment bed had eroded away, perhaps aleviating conditions of moisture-
stress there, and no sign of Chionaspis was found. Infestation of
Tamarix by Chionaspis appears to be controlled by moisture stress.

Another scale-like herbivore on Tamarix was found on moisture-stressed
plants at Lees Ferry, Arizona. The pseudococcid mealybug, Phenacoccus
helianthi (Cockerell) is a generalist native to the Southwest (McKenzie,
1967). This species is rare on Grand Canyon Tamarix.
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Relative Abundance of Invertebrate Herbivores '

Patterns of invertebrate distribution on Tamarix and S. exigua remained
similar after 1983 to those previously described by Stevens (unpublished
1985)., The herbivore community on S. exigua was comprised of Empoasca,
Idiocerus, Alconeura (Cicadellidae), mirids, psyllids and aphids, while
that on Tamarix was dominated by Opsius stactogalus. Paired t-tests on
a matched pair of study sites (T2 and S2) showed that mean herbivore
abundance from August 1982 through July, 1985 was 288.3 insects/50
sweeps on S. exigua and 289.5 1nsects/50 sweeps on Tamarix, not
statistically different at p = 0.755 (df = 7). Stevens (op. cit.) found
that abundance data from sweep-netting were highly correlated with
actual biomass of herbivores/g photosynthetic material on these plant
species. Figure 4.1A and 4.2A show herbivore abundance on 3 S. exigua
and 3 Tamarix study plots from March, 1980 through July, 1985.
Population increases in 1980 and 1984 occurred only on the two Tamarix
sites that lay wholly in Zones A and B. §h of these years were
characterized by relatively high flows of 1,100m”/sec to 1,400m”/sec and
normal or above-normal summer prec1p1tat1on. A slight increase in S2
herbivore abundance (and in Tamarix stands at Lees Ferry, and at the Tl
and T2 sites) was also seen in 1985, a flood year with low summer
precipitation. A lower magnitude population bloom occurred in 1985,
suggesting that both precipitation and flooding contribute to Opsius
outbreaks on Tamarix. The total invertebrate abundance was 467.9
insects/50 sweeps on S. exigua and 484.8 insects/50 sweeps on Tamarix,
and not significantly different (p = 0.914, df = 7). Invertebrate
herbivore abundance on both plant species declined with distance
downstream in August, 1984 (Figures 4.3A and 4.4A), particularly on
Tamarix.

Invertebrate Species Richness

Salix exigua supports three times as many species of phytophagous
invertebrates as Tamarix in _this system. Herbivore species richness
varied significantly between these two plant species, with a mean of
12.13 species/50 sweeps on willow and 3.75 species/50 sweeps on Tamarix
(p < 0.001, df = 7). Figure 4.1B and 4.2B show this pattern of higher
species on three S. exigua study plots and three Tamarix study plots
from March, 1980 to July, 1985. Total invertebrate species richness was
also s1gn1f1cant1y higher on S. exigua (mean = 33.4) than on Tamarix
(mean = 15.9) at p = 0.004 (df = 7). Invertebrate herbivore species
richness on both plant species declined with distance downstream from
Lees Ferry in August, 1984 (Figures 4.3B and 4.4B).

Community Structure and Similarity

Invertebrate herb1vores were significantly more even]y distributed on S.
exigua (mean J' = 0.650) than on Tamarix (mean J' = 0.370; p = 0,043, df
= 7), again ref]ecting the strong dominance of OEsius on Tamar1x
(Appendix 4.1). In 1984 herbivore community similarity, as measured by
SIMI comparisons, remained relatively constant for S. exigua through
distance downstream from Lees Ferry, but community simiTarity declined
with distance on Tamarix (Figure 4.5). Comparison of late-summer
samples from 1982 with samples in subsequent years showed that community
similarity dec11ned on Salix plots from 1982 to 1984, and then rose
again in 1985 (Figure 4.6). Causes for the decl1ne in community
similarity are related to extensive, prolonged inundation of Salix
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stands in both 1983 and 1984, during which time phytophagous insects
were literally washed off their host plants. High community similarity
on S.exigua in 1985 indicated a rapid recovery of invertebrate herbivore
populations. On Tamarix plots, SIMI remained high from 1982 through
1985 on T1 and T2, plots which lay wholly in Zones A and B. Tamarix
plot T3 showed a decline in SIMI value in 1983 and 1984 and then a
recovery in 1985. Because of their greater stature, Tamarix plants were
often not completely inundated by high discharges in 1983, and the
associated phytophagous insect retinue was afforded some refuge. Also,
Stevens (1985) showed that, in part, the apparent stability of Tamarix
herbivore communities was due to low species richness on this plant
species.

Adult Forms of Aquatic Diptera

Aquatic Tarval Diptera emerge from the river and land on terrestrial
riparian vegetation to rest and breed. Chironomid and, to a lesser
extent, simuliid flies were regularly collected in sweep-net samples,
and these species comprise a substantial proportion of the invertebrate
resource base available to terrestrial vertebrates. To determine
abundance and population fluctuations of aquatic Diptera through time,
adult chironomid midge abundance was compared on two matched pairs of
Tamarix and S. exigua study plots from 1980 through 1985 (Figure 4.7).
Collections on Tamarix plot T2 (Mile 48.4R) were paired with
contemporaneous collections on S. exigua plot S2 (Mile 50.2R) from July,
1980 to July 1985. Comparisons were also made with matched Tl (Mile
43,5L) and S1 (43.1L) samples from May, 1980 to May, 1983. Two or more
chironomid species were represented in most samples.

Paired t-tests on pooled data show that chironomids were significantly
more abundant on S. exigua (mean abundance/50 sweeps = 129.8, n=31) than
on Tamarix (mean abundance/50 sweeps = 87.4, n= 31) at p =0.039 (df =
30). Adult chironomids may land selectively on Salix over Tamarix
because (1) Salix is a native plant species and/or is less biochemically
offensive, and/or (2) Salix supports fewer arboreal vertebrate
predators. From our observations, Sceloporus magister (Iguanidae) and
many avian species forage arboreally far more often in Tamarix than in

S. exigua.

Overall mean chironomid abundance on four study sites from 1980 to 1985
was 225.6/50 sweeps. Oneway analysis of variance of adult chironomid
abundance/50 sweeps on these four plots varied significantly between
years (p =0.004, df = 5, 63). Duncan's multiple range test showed 1981
and 1985 had significantly higher chironomid abundance than did the
other years. Discharge was slightly lower than normal in 1981, and 1985
was characaterized. by high flows, similar but not as prolonged as
1984, These results suggest a relationship between discharge regime and
adult chironomid population on terrestrial riparian plants because years
with high flows and large fluctuations in flow (1980 and 1983) produced
the lowest adult chironomid populations, and extreme fluctuations may
negatively affect Cladophora beds and therefore the chironomid
populations that dwell in them. It is hoped that ongoing research in
other quarters of this environmental assessment will cast more light on
factors regulating chironomid populations, such as discharge
fluctuation, turbidity, predation by fish, and climate.
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Discussion

Flooding in 1983 in the Colorado River corridor in Grand Canyon removed
or otherwise killed more than 50% of the vegetation below the
1,700m°/sec discharge stage. This vegetation supported a substantial
community of largely host-specific phytophagous invertebrates. Removal
of riparian vegetation proportionately reduced the biomass of
invertebrate herbivores, a reduction in potential food resources with
unknown consequences on higher trophic levels in this system.

Moderate levels of flooding (i.e. below 1,400m3/sec in 1980 and 1984)
and normal or above-normal summer precipitation stimulated population
increases among invertebrate herbivores on S. exigua and Jamarix in
Grand Canyon. Increased plant growth following flooding is suggested as
a likely cause for these population outbreaks, although experimental
verification is needed. High levels of flooding depressed herbivorous
invertebrate population levels by inundating entire plants (especially
in the case of S. exigua) and washing invertebrates away. Invertebrate
community similarity decreased markedly in 1983 on Tamarix and in 1984
on S. exgua, but thereafter recovered quickly. Changes in herbivore
distribution patterns were minor on both plant species and community
similarity between 1982 and 1985 remained generally high.

While flooding in 1983 reduced overall invertebrate biomass by removal
of host plants, flooding did not greatly affect phytophagous
invertebrate diversity on plant species whose populations remained
relatively intact, such as Salix and Tamarix. Baccharis salicifolia and
B. emoryi populations suffered large-scale reduction throughout much of
the river corridor; however, these plant species naturally support only
lTow densities and diversities of herbivore species, and it is unlikely
that their contribution to overall invertebrate production is
significant in this system.

Foliage feeding invertebrate populations appear to recover quickly from
flooding disturbance; however, fossorial, geophilic and Tleaf-litter
species (e.g. Arachnida, Collembola, Homoptera, Coleoptera, and ground-
dwelling Hymenoptera) may be much slower to respond. We have little
data on these guilds of invertebrates, but observations before and after
flooding in 1983 indicated several trends. Reduction of S. exigua and
other important cover species throughout the river corridor reduced
habitat availability for ground-dwelling spiders, collembolans, and
beetles. Until cover is restored on beaches, populations of many of
these species will remain at low levels. :

Harvester ants (Pogonomyrmex spp.) nest in diverse settings in this
system, and were abundant on beaches prior to 1983. These scavengers
forage on seeds and human refuse. Pogonomyrmex populations on beaches
were severely reduced by flooding in 1983, Winged, reproductive adults
emerge in July (Stevens 1976a) and colonize beaches at that time;
however, repeated mid-summer flooding in 1984 and 1985 precluded
recolonization by harvester or other ant species.

Apache cicadas (Diceroprocta apache) were extremely abundant in the

river corridor prior to 1983, and this species is known to be a




69

preferred food resource for many birds (Glinski and Ohmart 1984). Root-
feeding, fossorial cicada nymphs appear to require moderately well-
drained soils with abundant root growth, and -emerge in abundance in
early summer (Stevens unpublished 1985). Prior to flooding in 1983,
exuviae were abundant on all study plots and the droning buzz of adult
male cicadas was heard throughout the river corridor. Following
flooding in the summer of 1983 and 1984 adult cicadas were heard only
rarely and exuviae were not found on any plants or study plots that had
been inundated. At Mile 122.1R in 1982, cicada egg slashes were found
on more than 90% of S. exigua stems. In 1984 and 1985, no ovipositional
slashes were found on several hundred S. exigua stems examined in this
. area, From these observations we may surmise that nymphal Apache
cicadas were drowned by floodwaters, and the population has been slow to
recover.

Baccharis spp., Aplopappus acradenius, and other Compositae species
bloom in the fall and, prior to flooding, supported large numbers of
nectar-feeding Hymenoptera, such as Pompilidae, Sphecidae, and
Chalcidoidea. Some of these wasp species, especially the Bembicine
sphecids, prey on potentially noxious fly species (e.g. Calliphoridae
and Sarcophagidae) that emerge in great abundance in spring. and
autumn. Reduction in flower availability (food resources) for these
wasp species could not have improved their efficiency as predators, and
may result in increased populations of pestiferous, non-biting flies in
this system. :

Elevated discharges in 1984 and 1985 left pools of standing water in
many back-beach areas, and provided appropriate breeding habitat for
mosquitoes (Culicidae). In 1984 and 1985 mosquitoes were noted at
numerous sites where they had not been observed before, and were far
more abundant than normal at sites such as Cardenas Creek and upper
Unkar, where they occurred before. Similarly, pestiferous tabanid deer
flies were far more common thoughout the river corridor in 1984 and 1985
than they have been in the past ten years. Larval tabanids require
moist substrates for growth, conditions which have been provided since
1983 by prolonged inundation. Populations of an intensely pestiferous
"no-see-um" near Leptoconops (Diptera: Ceratopogonidae) were extremely
high in the reach from Mile 220 to 226 in 1984 and 1985. Larval
ceratopogonids require moist substrates provided by continuous,
prolonged discharges. A1l of these observations suggest that
populations of pestiferous Diptera in this system respond positively to
flooding, and represent an unwelcome source of human discomfort.

Elevated discharges stimulated population explosions of at least two
other insect species in this system. Prior to 1983 a large, aquatic
hydrophilid beetle, Hydrophilis (triangularis?) was rare in this system
and restricted to tributaries, particularly in the lower half. of Grand
Canyon. In 1984 and 1985 standing pools of water left by receding high
discharges provided suitable habitat for this species along the river,
and both larvae and adults were commonly encountered throughout the
river corridor. Prior to 1983 trydactylid crickets occurred only in
tributary riparian settings in the Grand Canyon. Following subsidence
of elevated discharges in 1985, a population outbreak of tridactylids
was observed on riverside beaches in the lower Canyon. This outbreak
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was of sufficient magnitude to cause discomfort to commercial
recreationists. This was the first outbreak of this species in twelve
years of observation. ’

Aquatic and Terrestrial Trophic Interactions

We compiled a food-web diagram for the Colorado River riparian ecosystem
using information gathered over the past decade of research and
observation in Grand Canyon (Figure 4.8). This diagram is, as yet, non-
quantitative, but indicates actual and probable trophic relationships
between the aquatic and terrestrial aspects of this system. Several
points from this diagram merit discussion.

First, the aquatic and terrestrial components of this system are
intimately related. Flooding of the river promotes erosion (Stevens,
unpublished 1982), substrate leaching, and increased terrestrial plant
mortality near the river, and may stimulate vegetation growth on pre-dam
terraces (Ruffner and Anderson, this assessment).

Secondly, higher trophic level terrestrial omnivores and insectivores
depend on adult aquatic Diptera as food resources in this system.
Chironomid midges and simuliid gnats probably comprise much of the diets
of aerially-feeding swifts, swallows, and perhaps of hummingbirds in the
river corridor. Swallows dissected in 1975 by one of us showed
extensive 1infestations of muscle cysts, and such parasites may be
vectored by chironomid midges (this requires further study).
Insectivorous Bufo spp. toads, and Cnemidophorus, Uta, Urosaurus, and
Sceloporus 1izards feed heavily on adult aquatic Diptera, and
Pogonomyrmex ants have been observed harvesting simuliids, especially
during periods when seeds are scarce. Additionally, Cnemidophorus and
probably other 1izards, as well as several avian species, forage along
the water's edge and harvest stranded Gammarus.

While the pattern of aquatic resource use by terrestrial species is
clear, the role of terrestrial invertebrates in this system has not been
established. The extent to which semi-aquatic and terrestrial toads,
lizards, birds, and rodents depend on terrestrial invertebrates
(especially ground-dwelling and phytophagous species) is not known. As
indicated above, outbreaks of phytophagous Heteroptera on dominant plant
species may represent an equally valuable food resource for vertebrate
insectivores in this system. Future research should include specific
studies of trophic interactions and quantification of energy flow in
this system to determine .the importance of the aquatic ecosystem
components to the terrestrial components, and vice versa.

Disturbance from flooding directly or indirectly affects most, if not
all, of the terrestrial species and processes in this riparian system.
It is imperative that discharge management criteria - include
consideration of impacts on the terrestrial components of this system.
We have tried to demonstrate some of the problems engendered by erratic
high releases in this system, and encourage managers to carefully
consider operating criteria that protect and improve the value of the
post-dam riparian vegetation zone in Grand Canyon.
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Conclusions
The following conclusions are drawn from this portion of the study:

1. Because of the extensive flood-induced loss of riparian vegetation
and substrate in this system, a substantial proportion of the total
biomass of phytophagous, terrestrial, and fossorial riparian
invertebrate life was lost in 1983,

2. Outbreaks of invertebrate herbivores on Tamarix and, to a lesser
extent, Salix exiqua, are correlated with moderate levels of flooding
and adequate summer precipitation in this system. Normal (pre-1983) and
high (e.g. 1983) discharges and low summer precipitation (e.g. 1985)
resulted in low densities of invertebrate herbivores. This correlation
should be tested experimentally before it is used as a management
criterion.

3. Flooding temporarily decreased invertebrate herbivore species
richness on Salix exigua, but not on Tamarix 1in this system.
Phytophagous invertebrate populations generally recovered from flooding
quickly. As compared to 1982, invertebrate herbivore community
similarity declined in 1983 and 1984 on Salix exigua but remained
relatively constant on Tamarix. In 1985 levels of community similarity
were comparable to 1982 levels.

4, Phytophagous invertebrate community similarity declined with
distance downstream from Glen Canyon Dam for Tamarix but not for Salix

exigua.

5. Adult chironomid midges were observed to comprise a significant
proportion of the food resources available to predaceous insects,
amphibians, reptiles, and birds in this system. Chironomids prefer to
alight on Salix rather than

Tamarix, and adult chironomid populations were lowest during years of
high flows and large fluctuations (1980 and 1983).

6. Changes in the population dynamics of several insect taxa were
observed or inferred following post-1982 alterations in the discharge
regime in this system. Orthopteran (e.g. Tridactylidae), Coleopteran
(e.g. Hydrophilis), and pestiferous Diptera (e.g. Ceratopogonidae and
Tabanidae) populations increased, while Hymenoptera (especially ants and
sphecid wasps) populations declined.

7. Trophic interactions between the riverine and terrestrial components
of this ecosystem are complex and closely inter-related. Management of
terrestrial resources in the Colorado River corridor in Grand Canyon
will require a detailed appreciation of the major inter-relationships
between these components.
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FIGURE 4.3A: PHYTOPHAGOUS INSECT ABUNDANCE /50 SWEEPS ON SALIX EXIGUA
BY DISTANCE DOWNSTREAM FROM LEES FERRY IN MID TO LATE
~AUGUST, 1984.

B: PHYTOPHAGOUS INSECT SPECIES RICHNESS/50 SWEEPS ON SALIX
EXIGUA BY DISTANCE DOWNSTREAM FROM LEES FERRY IN MID-TO

LATE AUGUST, 1984.
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Tamarix chinensis
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FIGURE 4.4A: PHYTOPHAGOUS INSECT ABUNDANCE/50 SWEEPS ON TAMARIX
CHINENSIS BY DISTANCE FROM LEES FERRY IN MID TO LATE
AUGUST, 1984.

B: PHYTOPHAGOUS INSECT SPECIES RICHNESS/50 SWEEPS ON
TAMARIX CHINENSIS BY DISTANCE DOWNSTREAM FROM LEES
FERRY IN MID TO LATE AUGUST, 1984.
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FIGURE 4.5: CHANGE IN COMMUNITY SIMILARITY (STANDER, 1970) OVER DISTANCE
FROM LEES FERRY FOR SALIX EXIGUA AND TAMARIX CHINENSIS
PHYTOPHAGOUS INSECT COMMUNITIES, AUGUST 1984.

-FIGURE 4.6: CHANGE IN COMMUNITY SIMILARITY THROUGH TIME, USING STANDER'S
(1970) INDEX ON LATE SUMMER HERBIVOROUS INSECT DATA ON ONE
SALIX EXIGUA AND THREE TAMARIX CHINENSIS STUDY SITES.
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CHAPTER V: OPERATING CRITERIA

In this chapter we review and discuss the Bureau of Reclamation's five
flow regime alternatives proposed for Glen Canyon Dam (Wegner 1985).

Alternative 1: Monthly base-loaded power plant releases.

A base-loaded flow scenario is preferred for the riparian ecosystem in
Grand Canyon. Such a flow regime would (1) minimize leaching and Toss
of bhase cations, nutrients, and fine particle riparian substrates; (2)
minimize scouring removal and drowning of riparian vegetation; (3)
promote survival of established seedlings; and (4) encourage stability
of native invertebrate populations.

Alternative 2: Status quo with maximized power releases.

This alternative would prevent successful reestablishment and survival
of native riparian plant species in the floodzone where that vegetation
could be most prolific. Continued leaching and loss of nutrients and
fine particles would be promoted by such a flow regime, and would bring
a continued decline in habitat quality for riparian plant life. Extreme
daily fluctuations may promote rapid leaching from beach and bank
substrates as much as several meters above the water 1ine (Birkeland,
1984),

Alternative 3: Maximized power plant releases between 8,000cfs

and 25,000cfs.
This "limited disturbance" alternative is somewhat more conducive to
vegetation growth than is Alternative 2 (above). If erosion could be
alleviated by slowing the rate of change in discharge, this flow regime
could have a relatively minor negative impact on the terrestrial
gcosystem.

Alternative 4: Seasonally base-loaded flows with maximized power
releases in other seasons.

This alternative may be suitable for recreational interests but it is

not recommended for the riparian ecosystem because of the impacts of

leaching and loss of fine particle sediments, the Toss of vegetation,

and the destabilizing influence it would exert on the riparian

ecosystem.

Alternative 5: Maximized fishery releases.

This alternative is not recommended for the reasons discussed under
Alternative 2 (above). :

The Timing of Spillovers

In the event of future spills in this system, the timing of spills could
conceivably be used to facilitate establishment of native plant species,
which produce seeds in the middle and late summer, over exotic Tamarix,
which produces most of its seed load in May and June. Spring flooding
may reduce invertebrate populations for a month or more after
subsidence, and riparian invertebrates are used extensively as food by
terrestrial vertebrates, particularly amphibians, reptiles, and birds.
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Spring flooding may negatively impact resource availability for these
vertebrates, and of special importance is resource availability for
nesting birds and reproductive amphibians and reptiles. While flooding
exerts negative effects on resources (invertebrate populations)
regardless of the season, flooding should be avoided during the peak
reproductive season for vertebrates.

Low water years have been shown by Stevens (unpublished 1985) to exert
negative impacts on Salix exigua growth. The preferred alternative for
low flow years is higher releases during the hottest, driest months
(late May through mid-July) to protect established plants from
dessication.

From a practical standpoint we recognize the difficulty of multiple use
discharge management 1in this system; however, spillover releases 1)
wreak havoc on the riparian ecosystem, 2) are wasteful, and 3) are
potentially damaging to Glen Canyon Dam. The biotic and recreational
value of the Colorado River riparian corridor in Grand Canyon justifies
its inclusion as a resource worthy of preservation. Protection and
improvement of this riparian system can only be achieved through a
carefully considered policy of discharge management. We hope that this
report contributes to an improved understanding and dialogue concerning
proper management of this system.




CHAPTER VI: GENERAL CONCLUSIONS

Dam Effects on the Colorado River Corridor

Riparian lands have repeatedly been shown to be the most valuable and
yet the most abused habitats in the Southwest (Johnson and Jones 1977;
Johnson and Carothers 1982; Johnson et al. 1985). The construction of
Glen Canyon Dam created a riparian habitat of considerable worth to
wildlife and recreation (Carothers and Aitchison 1976; Turner and
Karpiscak 1980; Stevens unpublished 1985) and the responsibility for the
well-being of this riparian ecosystem rests squarely on the shoulders of
the Bureau of Reclamation and the National Park Service. We wish to
emphasize the need for intentional management in this system, not
accidental erratic discharges that are detrimental to the environmental
quality and value of this riparian ecosystem.

In Grand Canyon, low magnitude flooding (relative to the "normal", 1963-
1979 flow) in 1980, resulted in increased beach erosion but initiated a
short-lived germination event (Stevens unpublished 1982 and 1985).
Catastrophic flooding in 1983 had at least three direct effects on the
terrestrial riparian ecosystem. First, flooding was a leaching event,
resulting in marked decreases in substrate base cation concentrations,
particularly monovalent cations, reduced organic matter, and reduced
proportions of fine particle clays and silts in inundated substrates.
Minor changes in substrate pH accompanied this event. These substrate
changes promote an increased rate of erosion of beach sands and reduce
the nutritive value and water-holding capacity of beach sands, thereby
reducing the quality of the habitat for seedling and adult riparian
plants.

Secondly, flooding removed or dgowned more than 50% of the riparian
plants below the estimated 1,700m”/sec stage, the zone in which post-dam
vegetation was formerly most profuse. Total mortality rates were
highest near the river and on sand and cobble substrates, and were
strongly differential, with Tamarix, Salix spp., Acacia, Phragmites,
Aster spinosus and Tesssaria sericea faring better than Prosopis, Typha,
Baccharis spp. and Brickellia. While no plant species were lost from
the river corridor by this flooding event, the evenness of distribution
of species declined slightly  but significantly because of
disproportionate declines in the abundance of certain species. Post-
flood germination was observed on many sites, and continued in 1984 and -
19853 - Return of discharge levels to pre-1983 "normal" levels (85-
820m°/sec) may strand many of the surviving recruits above the capiilary
fringe, and increase seedling mortality.

Thirdly, flooding in this system affected insect community dynamics in
many ways. Populations of phytophagous invertebrates on Tamarix and
Salix were directly reduced by flooding. Unlike S. exigua, Tamarix

occupies non-inundated Zone D in this system, and populations of
phytophagous insects on Tamarix--notably that of Opsius stactogalus--
quickly reinvaded and reached outbreak proportions in. 1984, Flooding
reduced populations of fossorial and ground-dwelling invertebrates,
including harvester ants, Apache cicadas, and other important taxa.
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Recognizing the value of this riparian corridor for recreation and
wildlife, and the need for appropriate, intentional management, how can
the operation of Glen Canyon Dam prolong or facilitate the well-being of
this system? The flow regime of Glen Canyon Dam directly controls the
development of terrestrial riparian vegetation and riparian community
processes in this system. From the standpoint of biotic development in
Zone A and B, disturbance (erratic high flows and erosion) should be
kept at a minimum to maximize biological activity and to facilitate the
process of vegetational succession. Stevens (unpublished 1985) found
that understory species diversity and biomass increased rapidly from
July, 1980 to May, 1983 (a period of relatively "normal" post-dam
flows), particularly beneath stands of Salix exigua. This recruitment
event was promoted by a relatively brief, 1,400m°/sec flood in 1980, and
was terminated by extreme discharges in 1983. Rare, low magnitude/short
duration flooding may be of value in promoting germination 1in riparian
habitats; however, riparian shrub and tree seed1ings require at least
several years to mature to the point where they can withstand the direct
consequences of such flooding (Kozlowski 1984; Stevens and Waring,
1985). Rare flooding might encourage decomposition of organic matter in
the substrate as well. Therefore, a flow scenario with an established
maximum discharge level--one that minimizes bank-cutting erosion--with
rare, low magnitude/short duration floods is considered best. By "rare"
we mean occurring on the order of once every 10 to 20 years. The
results of ongoing successional studies in this system should indicate
the schedule for such flooding events.
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GLOSSARY

atomic absorption spectrophotometry a technique for the measurement of
ion concentrations through ignition and comparison of absorption or
emission of specific light wavelengths against a known standard.
alluvium geologic materials moved by water.

analysis of variance a statistical technique that compares the means of
two or more sets of data. '

anoxic without free oxygen.

base cations +the positive1¥ charged mineral ions sodium (Na+),
potassium (K" ), calcium (Ca’), and magnesium (Mg ).

biomass the wet or dry total mass of biological material (usually of a
given taxon) per unit area.

buffer mitigation of change, specifically in pH.

capillary rise the elevation of water in a porous substrate through
capillary action.

carbonate consisting largely of the mineral, calcium carbonate: CaC0O;

2

Chi® test a statistical test that compares observed with expected

values.
clone vegetative (asexual) generation of somatic tissue.
colluvial geologic materials moved by gravity.
community a group of ecologically interacting populations.
disturbance a chénge in biotic and/or abiotic environmental conditions.
divalent having a double, positive ionic charge.

Duncan's mutliple range test a statistical test that indicates specific
relationships between the means of three or more data sets.

edaphic relating to the soil, especially from the standpoint of
vegetational requirements

entisol a soil order composed of young, unweathered soils with no 0 or
A horizons.

eolian relating to the wind.

evenness - an ecological measure of the relative abundance of species
within a community (e.g. J').
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exotic introduced, not native.
fluvial having to do with rivers.
fossorial burrowing or otherwise dwelling in the soil.

gleyed a pedological condition in which chemical changes occur in a
soil depleted of free oxygen.

halophilic highly salt tolerant.

haplustoll a soil type occurring in a moderately arid climatic regime,
having moderate levels organic matter, and some profile development

hydrometer an instrument that measures the specific gravity of a fluid.

inceptisol a soil order consisting of relatively young substrates with
an 0 and/or a partially developed A horizon.

macrophyte an emergent aquatic plant.
mesic moist.
meteoric derived from atmospheric sources.

mollisol a soil order consisting of old, well developed horizons,
especially with well defined O, A, and B horizons.

monovalent having a single positive ionic. charge.

niche an n-dimensional ecological hypervolume, the biotic and abiotic
environment occupied by a species.

organic matter that portion of the substrate consisting of decomposed
and partially decomposed biological materials.

outbreak large, rapid expansion of a population.
pedology the study of soils and soil evolution.

pH the negative logarithm of hydrogen ion concentration; low pH means
high acidity and high pH means high alkalinity.

phosphorus binding complexing of phosphorus to other minerals.

principle components analysis statistical determination of the most
important factors affecting a variable. :

regression a statistical 1linear correlation of one variable with
another :

riparian streamside.

riffle a small rapid, usually bedded by cobbles.
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species diversity a community ecology statistic that combines species
richness and species abundance.

species richness the number of species in a community.

statistical significance the probability that an observation is not due
to chance; the probability that the variability between two or more
sets of data is not due to chance. In this study, the level of this
probability was set at 95%.

succession (predictable) change in the structure and species
composition of an ecological community.

t-test (paired) statistical comparison'of the means of paired sets of
data; used especially with small data sets.

texture (soil) the percent of gravel or rock, sand, silt, and clay in a
soil sample.

torrifluvent a young, unweathered soil deposited in an arid environment
by fluvial hydrologic processes.

transformation (of data) a technique in linear regression to stabilize
the variance of a data set.

trophic structure the food web of an ecological community.

turbidity reduction of light transmission, usually by suspended or
dissolved sediments in (flowing) water.

vortex a mechanical technique involving rapid spinning for mixing.

xeric desert adapted.
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APPENDIX 3.1: PLANT MORTALITY DATA FROM QUADRATS IN 1984. !

SECTION SPECIES
1 - Glen Cyn Dam to Lees Ferry 1 - Tamarix chinensis
2 - Mile 0 to Mile 61 2 - Salix exigua
3 - Mile 61 to 88 3 - Tessaria sericea
4 - Mile 88 to 166.5 4 - Baccharis salicifolia +
5 - Mile 166.5 to 226 B. emoryi y
REACH TYPE 5 - Baccharis sarothroides
1 - Eddy 6 - Baccharis sergiloides
2 - Straight reaches 7 - Prosopis glandulosa
3 - Riffle 8 - Acacia greggii
4 - Rapid 9 - Brickellia longifolia
10 - Aplopappus acradenius
FLOODSTAGE , 11 - Aster spinosus
1 - ZONE A 12 - Gutierrezia spp.
2 - ZONE B 13 - Other riparian species
3 - ZONE C 14 - Other talus slope species
SUBSTRATE TYPE
1 - Silt
2 - Sand
3 - Cobble
4 - Mixed sand and cobble ‘ ®
5 - Bedrock

HEIGHT CLASS
1 - Seedling ;
2 - 0.0m to 1.0m ’
3 - 1.0m to 2.0m
4 - 2.0m to 3.0m
5 - >3.0m
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APPENDIX 3.2:
ADDITIONAL SOURCES OF FLOOD-INDUCED PLANT MORTALITY
FROM GRAND CANYON, 1984
o
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APPENDIX 3.2B: PERCENT REMOVAL, PERCENT DROWNED, AND TOTAL PERCENT
MORTALITY OF INDIVIDUAL PLANTS UNDER OBSERVATION 1IN
ZONES A AND B, 1980-1984.

L3

TOTAL

SPECIES %REMOVED %DROWNED $MORTALITY (n)
Tach 28.82 34.65 49.41 (170)
Saex (clones) 14.93 0.00 14.93 (68)
Tese (clones) 33.33 20.00 . 44 .44 (18)
Basp 54,55 22.73 77.27 (44)
Acgr 0.00 50.00 50.00 (6) -
Prgl 14.29 42 .86 57.33 (14)

--- 44 .74 44,74 (76)
Phau (clones) - 42.31 0.00 42 .31 (26)
Tyla (clones) 83.33 0.00 83.33 (12)
Scirpus(clones) 100.00 0.00 100.00 (2)
Sago 6.67 7.14 13.33 (15)
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APPENDIX 3. 2C :

SOURCES OF FLOOD-INDUCED REMOVAL AND DROWNING-
MORTALITY DATA FROM "FLOATING TRANSECTS"

MILE AND SIDE

DATE CENSUSED

45.5-46 .8R
54-56R (1010m)

60.0-61.0L

79.0-80.0R+L
97.5-98.0R
155-157R+L
165.0L
166.5-179.5R

180-225,5R+L
196.5-198.2R

September, 1983
August, 1982

October, 1982

August, 1984

October, 1983
August, 1984
August, 1984
August, 1984
October, 1981
July, 1984

July, 1985

August, 1984
October, 1982

SPECIES & MORTALITY (n)

Basp 79.72 (286) m
Tach 5.76 (260) m
Saex 0.00 (842) m
Basp 0.00 (416) m
Prgl 0.00 (4) m

Tach 0.00 (941) r,m
Saex 0.00 (12,000) r,m
Basp 0.00 (434) r,m
Prgl 0.00 (6) r,m
Tach 16.20 (748) r,m
Saex 2.06 (3952) r,m
Basp 98.70 (76) r,m
Prgl 83.30 (6) r,m
Tach 27.27 (55) m
Basp 45.61 (57) m
Tach 93.10 (87) m
Basr 79.53 (127) m
Prgl 0.00 (36) r,m
Prgl 59.70 (67) r,m
Prgl 54.69 (64) r,m
Prgl 56.63 (83) m
Tach 0.00 (1800) r,m

Saex 0.00 (1 clone) r,m
Tese 0.00(14 clones)r,m

Basp 0.00 (17) r,m

Basr  0.00 (1004) r,m
Prgl 0.00 (36) r,m

Phau 0.00 (3 clones) r,m




>

<

MILE AND SIDE

DATE CENSUSED

196.5-198.2

137

SPECIES & MORTALITY (n)

August, 1984 Tach -~ 6.85 (1389) r,m
(contiued) Saex 0.00 (0) r,m
Tese 0.00 (13) r,m
Basp 0.00 (1) r,m
Basr 56.78 (796) r,m
Prgl 27.50 (40) r,m
Phau 0.00 (2) r,m
217-224L+R™ August, 1984 Acgr  4.09 (109) m
223.8-225.4L+R August, 1984 Prgl 38.89 (18) m

* Zone D only

r
m

data used to
data used to

calculate %mortality due

calculate %mortality due

to removal.
to drowning.
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APPENDIX 3.2D : MORTALITY BY bLANT SPECIES ON COBBLE BARS
AND COBBLE ISLANDS

L

)

MILE AND SIDE DATE CENSUSED - SPECIES & MORTALITY (h)
53.3R Cbl. Is. August, 1982 Tach 0.00 (184)
Basp 0.00 (14)
September Tach 98.46 (65) r,m ®
Basp 0.00 (0) all remvd
56 .6R Cbl. Bar August, 1984 Tach 79.42 (379) m
61.0R CbT. Is. June, 1984 Tach 87.50 (8) m
61.0L Cbl. Is. June, 1984 Tach 96.82 (157) m
73.0R Cbl. Is. May, 1983 Tach 0.00 (150) r,m
September, 1983 Tach 88.89 (90) r,m
73.1L Cbl. Bar September, 1983 "Tach 90.00 (100) m
88.5L Cbl. Is. August, 1984 Tach 100.00 (48) m
r = data used to calculate #mortality due to removal.,
@

data used to calculate %mortality due to drowning.

3
]
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APPENDIX 3.2E: AERIAL PHOTUGRAPH AMALYSES OF TAMARIX CHINEWMSIS

HORTALITY DUE T REMOVAL AND DROMNING 1%
STRAIGHT REACHESY, COBBLE 34RS2, AND RAPIDSS
IN GRAND CANYON, 1984.

HREMOVAL, %ORJIUNED AND

MILE, SIDE PHOTU DATE CENSUS DATE TOTAL %40RTALITY (n)
72.0R! November, 1980  August,1984 0.U0,37.50,37.50 (16)
73.0R% Hovember,198U  Augyust,l9s4d 0.00, 2.63, 2.63 (32)
76.3L3 November,1982  Auyust,1984 22.22,71.43,77.78 (36)
76.4L° Novewnber,1982 Augyust,l9yd4 0.00,26.09,26.09 (46)
94.8R2 qoveamber,14930 August, 1984 90.00,100.9,100.0 (10)
98.UR November,1930 August, 1934 11.90,13.51,23.81 (42)
125.0R% May, 1981 August,1984 0.00,35.00,35.00 (40)
133.5L1 November,1980  August,1934 0.00. 0.00, 0.00 (5)
133.6L3 November,1980  August,1984 0.00,100.0,100.0 (4)
* * * * * * *
HORTALITY BY REACH TYPE
Straiyht Reaches 0.00%R, 28.57%1, 28.57% Total tHortality (21
Riffles C6.72%R, 22.40%M, 27.61% Total Mortality (134
(32)

Rapias 19.85%R, 42.03%1, 51.22% Total ilortality




- APPENDIX 3.3: |
COMMON PLANTS OF THE COLORADO RIVER RIPARIAN ZONE, 1984.
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Families
Y Anacardiaceae
Rhus trilobata Nutt. ‘ squay-bush
location: Ca. mile 37.5 L, above Marble Canyon drill sites at the

bend of River.

Date: 14-VYil1-84. Coll: A. Neas Elev: ca. 3130’
Asclepidaceae
Asclepias latifolia (Torr.) Raf. milkweed
°® location: Mile 24.5 L, along River below camp, commeon.
Date: 13-VYIi1-84. Coll: A. Neas Elev: ca. 3150°
Sarcostemma cynanchaides Decne. climbing milkweed
location: Mile SO L near camp.
. Date: 16-VI11-84. Call: A. Neas Elev: ca. 2850°
Asteraceae

Artemesia filifolig Torr.
location: Near mile 11 R, Soap Creek Rapid on beach.
Date: 13-V11-84. Coll: A. Neas Elev: ca. 3075’

Artemesia ludiviciang Nutt. ssp. albula (Woot.) Keck.
lacation: Mile 8 R, beach at Badger Creek Rapid, common.
Date: 12-VY111-84. Coll: A. Neas Elev: ca. 3150

Artemesia ludiviciana Nutt. var. mexicana (Wind.) Keck.
lacation: Mile 24.5 L, along River at camp, common.

° Date: 13-VI11-84.  Coll: A. Neas Elev: ca. 3150
Aster spingsus Benth. spiny aster
location: Mile 9.5 L, at Steven’s study plot on slope.
Date: 13-VI111-84. Coll: A. Neas Elev: ca. 3150°
;
. location: Mile 24.5 L, along River at camp, common.
Date: 13-VI111-84. Coll: A. Neas Elev: ca. 3150’
-
Baccharis glutinosa Pers. seep-willow

location: Mile ca. 53 R, near camp below Nankoweap Rapid.
Date: 16-VYIIl-84. Coll: A. Neas Elev: ca. 2775
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Brickellia longifolia Wats. -
location: Mile 8 R, beach at Badger Creek Rapid, common.

Date: 12-V¥I11-84. Coll: A. Neas Elev: ca. 315¢°
9

Chrysothamnus nausegsus (Pall) Britton ~ rabbitbrush

location: Near mile 11 Soap Creek, on beach at bottom of slope.

Date: 13-VIlI-84. Coll: A. Neas Eley: ca. 3075’
Conyza canadensis (L.) Cronquist horsevweed

location: Mile 8 R, beach at Badger Creek Rapid, common. ®

Date: 12-V¥lI1-84. Coll: A. Neas Eley: ca. 3150°

- Dicartia sp.
location: Mile ca. 32 R, at sandbar above Yasey's Paradise.
Date: 14-Y111-84. Coll: A, Neas Elev: ca. 2875
Remarks: Collect plants in fruit, in September.

Dyssaodia thurberi (Gray) Robins. dogweed
location: Mile 9.5 L, at Steven's study plot on slope.
Date: 13-VI11-84. Coll: A. Neas Elev: ca. 3150’
location: Mile 24.5 L, along slope abaove camp, common.
Date: 13-VI1l1-84. Coll: A. Ness : Elev: ca. 3150
location: Ca. mile 71.3 R, beach below Cardenas Creek.
Date: 18-VilI-84. Coll: A. Neas Elev: ca. 2790
Gnaphalium cf. chilense Sprenge ®
location: Mile ca. 53 R near camp below Nankoweap Rapid.
Date: 16-Y111-84. Coll: A. Neas Eley: ca. 2775
Gutererrezia microcephala (DC) Gray shake-weed
location: Mile 8 R, beach at Badger Creek Rapid, common. i
Date: 12-VI11-84.  Coll: A. Neas Elev: ca. 3150 :
lva acerosa (Nutt.) Jackson copperweed S
location: Mile 98 R ca. 0.25 mile from Crystal Creek.
Date: 20-V111-84. Coll: L. Stevens Elev: ca. 2400

Remarks: Only one specimen was collected; collect more for NAU.
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Leucelene ericoides (Torr.) Greene
location: Mile 24.5 L, along slope above camp, very common.

Date: 13-¥I111-84.  Coll: A. Neas Eley: ca. 3150
Perityle emoryi Torr. rock daisy

location: Mile 65.3 R side of River above Lava Canyon Rapid.

Date: 17-¥111-84.  Coll: A. Neas Elev: ca. 2695

Remarks: Collect more for NAU.

Plurocaranis pluriseta {Gray) R. King & H. Robinson
location: Mile 144 R side of River.
Date: 23-VI[1-84. Coll: L. Stevens Elev: ca. 1875
Remarks: Only one small specimen was collected; it was in poor
shape; others need to be collected in flower and/or fruit.

Salidaga gccidentalis goldenrod
location: Mile ca. 32 R at sandbar above Yasey's Paradise .
Date: 14-V111-84.  Coll: A. Neas Elev: ca. 2875

Remarks: Common, mixed with Carex, and poisan ivy.

Stephanemeria exigua Nutt.
location: Mile 8 R, beach at Badger Creek Rapid, common.

Date: 12-¥I111-84. Coll: A. Neas Elev: ca. 3150".
Tessaria sericea (Nutt.) arrow weed

location: Mile 8 R, beach at Badger Creek Rapid, common.

Date: 12-¥111-84. Coll: A. Neas Elev: ca. 3150"

location: Mile ca. 53 R near camp below Nankoweap Rapid.
Date: 16-VY1]1-84. Call: A. Neas Elev: ca. 2775
Remarks: A few plants were flowering.

Xylarhiza tortifalia (T. & G.) Greene desert aster
location: Mile 9.5 L, at Steven’s study plot on slape.
Date: 13-VY1l1-84. Coll: A. Neas Elev: ca. 3150’

Remarks: Plant was without flowers; coliect in flower,if
possible.

Boraginaceae

Cryptantha sp.
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location: Mile 24.5 L, along River below camp, common.
Dote: 13-YIl1-84. . Coll: A. Neas ' Eley: ca. 3130 )
Brassicaceae
Lepidium fremontii wats. peppergrass 9
location: Mile 8 R, beach at Badger Creek Rapid, common. _
Date: 12-VIII-84. Coll: A. Neas Elev: ca. 3150°
location: Mile 9.5 L, at Steven's study plot on slope.
Date: 13-V111-84. Coll: A. Neas Elev: ca. 3150°
o
Lepidium mantanum Nutt. peppergrass
location: Mile ¢a. 53 R near camp below Nankoweap Rapid.
Date: 16-Y111-84. Call: A. Neas Elev: ca. 2773
Remarks: Plants were flowering; collect large fruiting plants for
NALU. :
Stanleya pinnata (Pursh) Britton desert plume
location: Mile 24.5 L, along River below camp, common.
Date: 13-Y111-84. Coll: A. Ness Elev: ca. 3150’
Chenopodiaceae
Corispermum nitidum Kit. bug-seed
location: Mile 50.3 L, on beach at camp.
Date: 15-VY1l1-84. Coll: A. Neas Elev: ca. 3000’
location: Mile 179 L, above Lava Falls Rapid.
Date: 25-VYI11-84. Call: L. Stevens Elev: ca. 1700°
@
Sugeda torreyans Wats. seepweed
location: Mile 52.5 R, beach near Nankoweap Rapid.
Date: 16-Y111-84. Coll: L. Stevens . Elev: ca. 2775
Cyperaceae | ;
Carex sp. sedge ' :
location: Mile ca. 32 R &t sandbar above Yasey's Paradise . _
Date: 14-V!11-84. Coll: A. Neas Elev: ca. 2875 3
Cyperus sp. sedge
location: Mile 52.5 R, beach near Nankoweap Rapid.
Date: 16-VYil1-84. Coll: A. Neas Elev: ca. 2775
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Scirpus validus Yahl. _ bullrush
f location: Mile 52.5 R, beach pond near Nankoweap Rapid camp.
Date: 16-V111-84.  Coll: A. Neeas Elev: ca. 2775
v Ephedraceae
Ephedra torreyana Wats. : jointfir
location: Near mile 11R, Soap Creek Rapid
Date: 13-V111-84. Coll: A. Neas Elev: ca. 3075
° location: Mile 24.5 along River below camp on east side, common.
Date: 13-VIlI-84. Coll: A. Neas Elev: ca. 315Q°
Equisetaceae
Equisetum hyemsie L. scouring rush
location: Mile ca. 32 R at sandbar above Vasey's Paradise .
Date: 14-V111-84.  Coll: A. Neas Elev: ca. 2875
Fabaceae

Amorpha fruticosa var. occidentalis (Abrams) Kearney & Peebles
False-indigo
location: Ca. mile 8 L, beach near Jackass Creek.
Date: 12-¥111-84. Coll: A. Neas Elev: ca. 3100°

Cassia covesii Gray
location; Ca. mile 71.3 R, beach below Cardenas Creek.

Date: 18-VIlI-84. Coll: A. Neas Elev: ca. 2750
° Medicago sativa L. alfalfa
. location: Mile 52.5 R, beach near Nankoweap Rapid.
Date: 16-VYIii-84. Coll: A. Neas Elev: ca. 2775
Lamiaceae
Hedeoma diffusum Greene Mock-pennyroyal
g location: Mile 24.5 L, along River below camp, common. '
Date: 13-Y111-84. Coll: A. Neas Eley: ca. 3150°
LY
Loasacese
Mentzelis pumila (Nutt.) Torr. & Gray stickleaf
location: Mile ca. 43.8 L, on sandy area near camp, common.

Date: 15-VIlI-84.  Coll: A. Neas ' Elev: ca. 2850 |
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Malvaceae
Sphaeralcea subulata? Coult. - globe-mallow
location: Mile ca. 71.3 R, on sandy area in camp, common.
Date: 17-VIilI-84. Coll: A. Neas Elev: ca. 2700’

Remarks: Collect fruiting plants.

Nyctaginacesae
Abronia fragrans Nutt. sand-verbena.
location: Mile ca. 52.5'R, on sandy area below Nankoweap Rapid.
Date: 17-YI11-84. Coll: A. Neas Elev: ca. 2775
location: Mile ca. 71.3 R, on sandy area in camp, common.
Date: 17-VI11-84. Coll: A. Neas Elev: ca. 2700°
Onagracese
Cengthera pallida Lindl. evening primrose
location: Mile 8 R, beach at camp , Badger Creek Rapid, common.
Date: 12-VIlI-84. Coll: A. Neas Elev: ca. 3150’
Plantaginaceae
Plantago major L. plantain
location: Mile ca. 32 R, st sandbar above Vasey's Paradise .
Date: 14-V|11-84. Coll: A. Neas . Elev: ca. 2875

Remarks: Likely to be a common weedy plant along beaches.
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Poaceae
Agrostis semiverticillata (Forsk.) Christ
location: Mile ca. 32 R, at sandbar above Vasey's Paradise .
Date: 14-V111-84. Coll: A. Neas Elev: ca. 2875
location: Mile 52.5 R, beach at Nankoveap Rapid.
Date: 16-VY111-84. Coll: A. Neas Elev: co. 2775
Aristida wrightii Nash ' three-awn
location: Mile 24.5 L, on slope above camp.
Date: 13-VI|1]1-84. Call: A. Neas Elev: ca. 3175
location: Mile ca. 32 R at sandbar above Vasey's Paradise .
Date: 14-V1l|-84. Coll: A. Neas Eley: ca. 26875
Bouteloua curtipendula (Michx.) Torr. side-oats grama
location: Mile 52.5 R, beach at Nankoweap Rapid.
Date: 16-V111-84. Coll: A. Neas Elev: ca. 2775
Bromus tectorum L. downy chess
location: Mile 245 L, on slope above camp.
Date: 13-V111-84. Coll: A. Neas Elev: ca. 3175
Bromus willdenawii Kunth. rescue grass
location: Mile SO L near camp.
Date: 16-Y111-84. Coll: A. Neas Elev: ca. 2850

Distichlis spicata (L.) Greene var. stricts (Gray) Beetle  saltgrass
location: Mile 24.5 L, along River below camp, common.

Date: 13-VI11-84. - Coll: A. Neas Elev: ca. 3150
Erioneuron pulchellum (H.B.K.) Tateoka. fluffgrass

location: Mile 24.5 L, on slope above camp. '

Date: 13-VI11-84. Coll: A. Neas Elev: ca. 3175

location: Ca. mile 71.3 R, beach below Cardenas Creek.
Date: 18-YI111-84. Coll: A. Neas Eley: ca. 2750




Muhlenbergia porteri Scribn. bush muhly
‘1ocation: Mile 24.5 L, along River below camp, common. -
Date: 13-VIli-84. Coll: A. Neas Elev: ca. 3130’

Panicum capillare L.
location: Mile 24.5 R, along River below camp, common.

Date: 13-VYIll-84. Coll: A. Neas Elev: ca. 31350°
Panicum obtusum HB.K. vine mesquite
location: Mile ca. 24.5 L, along River below camp, comman.

Date: 13-VYIlI-84. Coll: A. Meas Elev: ca. 3130

location: Mile 179.0 L along River below camp on east side.
Date: 25-¥111-84. Coll: L. Stevens Elev: ca. 1750°
Remarks: Trailing and growing in & straight column toward River.

Polypagen monspeliensis (L.) Desf. ' rabbitfoot grass
location: Mile ca. 24.5 L, along River below camp, common.
Date: 13-Y!iiI-84. Coll: A. Neas - Eley:ca. 3175
location: Ca. 50.2 L mile on beach at the camp. ,
Date: 15-V1lI-84. Coll: A. Neas Eley: ca. 2850
location: Mile ca. 32 R at sandbar above Yasey's Paradise .
Date: t4-%111-84. Call: A. Neas Elev: ca. 2875

Schizachyrium scoparium (Michx.) Nash little bluestem
lacation: Mile 8 R, beach at Badger Creek Rapid, common.

Date: 12-Y11i-84. Coll: A. Neas Elev: ca. 3130
location: Mile 179 L, above Lava Falls Rapid.

Date: 25-Vili-84. Coll: L. Stevens Elev: ca. 1700
Sporobalus cryptanthus (Torr.) Gray sand dropseed
location: Mile ca. 245 L, along River below camp, common.

Date: 13-Vi11-84. - Coll: A. Neas Elev: ca. 3175

location: Ca. 50.2 L mile »on beach at the camp. »
Date: 15-VI1i-84.. Coll: A. Neas - Elev: ca. 2830
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Polygonaceae
Erisgonum microthecum (Torr.) Woot. & Stand.  wild-buckwheat

location: Mile ca. 52.5 R on sandy area below Nankoweap Rapid.

Date: 17-V111-84. Coll: A. Neas Elev: ca. 2775
Polygonum coccineum Muhl. smartweed
location: Mile ca. 32 R at Vasey's Paradise in wet area.
Date: 14-VI11-84. Coll: A. Neas Elev: ca. 2875
Remarks: Growing with poison ivy, and Adiantum capillis-veneris.
Pteridaceae
Adiantum capillis-veneris L. venus-maidenhair fern
location: Mile ca. 32 R at Vasey's Paradise in wet area.
Date: 14-Y111-84. Coll: A. Neas Elev: ca. 2875

Remarks: Growing with poisoen ivy, common.

Rosacege
Fallugia paradaxa (D. Don.) Endl. Apache plume
location: Mile 245 L, in camp at bottom of slope. :
Date: 14-Y111-84. Coll: A. Neas Elev: ca. 3025".
Salicaceae
Salix exigua Nutt. coyote willow
location: Mile 8 R, at Badger Creek Rapid camp.
Date: 12-Y111-84. Coll: A, Neas Elev: ca. 3150".

location: Mile 133 site 2 up Tapeats Creek ca. 1.5 mi.
Date: 21?7-V111-84. Coll: L. Stevens Eley: ca. 2350".

Remarks: Palymarphic; in flawer.

Solanaceae

Lycium andersonii Gray wolfberry
location: Mile ca. 24.5 L, along River below camp, common.
Date: 13-VYIill-84. Coll: A. Neas Elev: ca. 3150’

Nicotiana trigonophylla Dunal. tobacco
tobacco ,
location: Mile ca. 32 R on sand bar above Yasey's Paradise.
Date: 14-VYI11-84. Coll: A. Neas Elev: ca. 2875
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Tamaricaceae
Tamarix pentandra Pall.
location: Mile 8 R, at Badger Creek Rapid camp.

Date; 12-VY111-84. Coll: A. Neas Eley: ca. 3130°

location: Mile 139 at Fishtail Sinks.

Date: 24-V111-84.  Coll: L. Stevens Eley: ca. 1950
Verbenaceae

Phyla cuneifalia (Torrey) Greene
location: Mile ca. 52.5 R on sandy area below Nankoweap Rapid.
Date: 17-VIII-84. Coll: A. Neas Elev: ca. 2775




~ APPENDIX 4.1:
INVERTEBRATE SWEEP-NET COLLECTION DATA BY GUILD FROM
THREE SALIX EXIGUA AND THREE TAMARIX CHINENSIS STUDY SITES
IN GRAND CANYON,1980-1985.
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APPENDIX 4.2
A: SPECIES OF PHYTOPHAGOUS INVERTEBRATES COLLECTED FROM
SALIX EXIGUA IN GRAND CANYON.

B: SPECIES OF PHYTOPHAGOUS INVERTEBRATES COLLECTED FROM
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APPENDIX 3.2a: INVERTEBRATE HERBIVORES COLLECTED FROM
' SALIX EXIGUA NUTT. IN THE GRAND CANYON, ARIZONA.

ACARINA
Acarina sp.

ORTHOPTERA
Gryllidae
Qecanthus quadripunctatus Beutenmuller

Locustidae
Melanoplus sp.
Schistocerca shoshoni Schudder

HOMOPTERA

Aphididae
Macrosiphum euphorbiae (Thomas)
Aphidid spp. I-IX

Cicadellidae
Aceratagallia sp.
Agalliopsis sp.
Alconeura unipuncta (Gillette)
Alconeura sp. [
Balclutha punctata (Fabricius)
Ceratagallia vastitatis (Oman)
"Dikraneura" sp.
Empoasca neaspersa Oman & Wheeler
Empoasca ophiodera Ross and Cunningham
Idiocerus rotundens DelL & Cald
Idiocerus ramentosus (Uhler)
Idigcerus sp.l
Koebelia irrorata Ball
Opsius stactogalus Fieber
Cicadellid spp. I-VI

-
N

v @ w
NN

-
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o e N e

Cicadidae
Diceroprocta apache Davis

—
-
N

Cixiidae
Qeclus productus Metcalf
Cixiid spp. I-11

-Delphacidae
Delphacodes sp.
Delphacid sp.

Psyllidae

Psylla sp.
Trioza maura Foerster
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Craspedolepta minutissima (Crawford) 1
Psyllid spp. I-1V 1 )

HEMIPTERA
Berytidae : 1
Berytid sp. ‘ 1

Coreidae
Leptoglossus sp.
Coreid sp.

et

Lygaeidae
Geocoris paliens Stal
Nysius raphanus Howard

Nysius? sp.
Lygaeid spp. I-1V

P e fend

Miridae
Orthotylus sp.
near Psallus sp.
Phytocoris sp.
Parthenicus near ruber Van Duzee
Parthenicus sp.
Mirid spp. I-1IV

el N
- - - - -
NN NN N

Pentatomid
Pentatomid spp. I-II 1

Pyrrhocorid
Pyrrhocorid sp. 1

Tingidae
Tingid sp. 1,2

COLEOPTERA

Anthicidae
Anthicid sp. 2

Chrysomelidae
Diachus ayratus (Fab.)
Disonycha alternata (Illiger)
Gtyptina cerina LeConte
Pachybrachis signatus Bowditch
Pachybrachis bivittatus (Say)
Pachybrachis sp.
Paria quadriguttata LeConte
Phyllotreta lewisii Crotch

)
N

= DN e NN

Hispine spp. I-1I
Chrysomelid spp. I-VI




-

Ce

Curculioni

Sibinia sp.

Melyridae

Amecocerus near annulatus (Casey)

Mordellida
Mordellidae sp.

LEPIDOPTERA
Gelechiida
Gelechiid sp.

Geometrida

dae

e

e

e

Semiothisa near fieldi

Geometrid spp.

Nymphalida

Nymphalis antiopa Linnaeus

I-111

e

Lepidoptera spp. I-II

THYSANOPTERA
Thripidae

Frankliniella occidentalis (Pergande)?

Thripid spp. I-

DIPTERA
Cecidiomii

Rhabdophaga sp.

REFERENCES
1 Stevens, 1985
2 This study

Il
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APPENDIX 3.2b: PHYTOPHAGOUS INVERTEBRATES COLLECTED FROM
TAMARIX CHINENSIS LOUR., IN THE UNITED STATES

ACARINA

Tetranychidae J
Tetranychus bimaculatus Harvey 5,7
Acarina sp. 6

ORTHOPTERA
Gryllidae
Gryllid sp.
Qecanthus quadripunctatus Beutenmuller

o
@

Locustidae
Aeolopus arixonensisSchudder
Hesperotettix viridis (Thomas)
Melanoplus differentialis (Thomas)
Melanoplus occidentalis (Thomas)
Schistocerca lineata Schudder
Schistocerca shoshoni Schudder
Schistocerca vaga (Schudder)
Trepidulus rosaceus Schudder

-
~J

DN~ O,
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Phasmidae
Diapheromera arizonensis (Caudell)
Diapheromera covilleae Rhen & Hebard

~ W

HOMOPTERA
Aphididae

Aphis craccivora Koch 5

Aphis gossypii Glover 5

Aphis medicaginis Koch 3

Macrosiphum pisi (Harvey) 3
3
3
6

Macrosiphum solanifolii (Ashm.)
Myzus persicae (Sulzer)
Aphidid spp. I-IX

Cercopidae
Clastoptera ovata Doering 7

Cicadellidae
Aceratagallia sanguinolenta (Provancher)
Aceratagallia uhleri (Van Duzee)
Aceratagallia sp.
Amblysellus grex (Oman)
Balclutha neglecta (DeLong & Davidson)
Ballana sp.
Carneocephala sp.
Ceratagallia neodona Oman
Chiorotettix viridis Van Duzee

O NN
-

OO OO,
- w
~N o~




-

€olladonus belli (Uhler)

Cuerna stiata (Walker)

Doleranus lucidus (Baker)

Empoasca abrupta DelLong

Empoasca sp.

Homolodisca liturata Ball

Idiocerus

apache Ball & Parker

Idiocerus

alternatus Fitch

Idiocerus

nervatus Van Duzee

Idiocerus

rufus Gillette & Baker

Idiocerus snowi Gillette & Baker

Idiocerus sp. I

Keonolla dolobrata (Ball)

Keonolla uhleri (Ball)

Lonatura salsura Ball

Macropis viridis (Fitch)

Macrosteles fascifrons (Stal)

Opsius stactogalus Fieber

Xerophloea viridis (Fabricius)

Cicadellid spp. I-V

Cicadidae
Diceroprocta apache Davis

Diceroprocta cinctifera (Uhler)

Tibicen inauditus Davis

Tibicen townsendi (Uhler)

Okanagana utahensis

Cixiidae
Qeclus campestris Ball

Oeclus cucullus Kramer

Oeclus decens Stal

Oecleus venosus Van Duzee

Oliarus sonoitus Ball

Oliarus sp.

Coccidae
Pulvinaria innumerabilis Rathon

Coccid spp. I-11

Delphacidae
Delphacodes sp.

Diaspididae
Chionaspis etrusca Leonardi

Flatidae _
Mistharnophantia sima Doering & Shepard

Ormenis saucia Van Duzee

Ormenis yumana Ball

Membracidae
Cyrtolobus sp.

Leioscyta ferruginipennis (Goding)
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Multareis cornutus lawsoni Cook
Publilia modesta (Uhler)

Pseudococcidae
Phenacoccus helianthi (Cockerell)
Puto sp.

Psyllidae
Heteropsylla texana Crawford
Kuwayama medicaginis Crawford
Paratrioza cockerelli (Sulc.)
Psylla near alba Crawford
Trioza collaris Crawford

Psyllid spp. I-II

Aleyrodidae
near Trialeurodes

HEMIPTERA
Berytidae
Berytid sp.

Cydnidae
Cydnoides albipennis (Say)

Coreidae
Leptoglossus?
Mozena sp.

Lygaeidae
Liorhyssus hyalinus Fabricius
Neacoryphus lateralis (Dallas)
Nysius raphanus Howard
Xyonysius californicus (Stal)
Lygaeid spp. I-1II

Miridae
Lopidea sp.
Lygus hesperus Knight
Lygus lineolaris (P. uB.)
Lygus pratensis Linnaeus
Melanotrichus coagulatus (Uhler)
Orthotylus sp.
Parthenicus near ruber Van Duzee
Parthenicus sp.II
Phytocoris sp. )
Polymerus basalis (Reuter)
Staterocoris stygicus (Say)
Mirid spp. I-III

Pentatomidae
Brochymena parva Ruckes
Brochymena sulcata Van Duzee
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Chlorochroa ligata (Say)
Chlorochroa sayi Stal
Pentatomid sp.

Pyrrhocoridae
Euryopthalmus convirus Stal

Rhopalidae
Aufeius impressicollis Stal
Liorphyssus hyalinus Fabricius

Stictopleurus viridicatus (Uhler)

COLEOPTERA
Anthicidae
Anthicus cervinus La Ferte

Anthicus sp.

Notoxus caudatus Fall

Notoxus calcaratus Horn

Anthicid sp. I

Bostrichidae
Amphicerus cornutus (Pallus)

Amphicerus simplex (Horn)

Bruchidae
Acanthoscelides chiricahuae (Fall)

Acanthoscelides collusus (Fall)

Acanthoscelides compressicornis(Schaeffer)

Acanthoscelides fraterculus (Horn)

Acanthoscelides prosopoides (Schaeffer)

Algarobious prosopis (LeConte)

Mimosestes amicus (Horn)

Mimosestes protractus (Horn)

Buprestidae
Buprestis confluenta Say

Chrysobothris strofasciata LeConte

Hippomelas sp.

Psiloptera drummondi Castelnau

Chrysomelidae

Altica near torquata LeConte
Altica near foliacea LeConte

Chaeatocnema ectypa Horn

Chaeatocnema sp.

Colaspoides sp.

Coscinoptera near dominicana Fabricius

‘Coscinoptera tricincta (Say)

Diachus auratus (Fab.)
Pachybrachis arizonensis Bowditch

Pachybrachis croftus Bowditch
Pachybrachis hepaticus Melsheimer

Pachybrachis near m-nigurm Melsheimer

AWwWWw
hd .
~

NNNNO NN

OO w~
-
~

-
~J

\n_b\tmoowm\n\nw\loo
-
~J

163




Pachybrachis mitis Fall
Pachybrachis sexnotata Bowditch
Pachybrachis signatus Bowditch
Pachybrachis sp.

Phylliotreta sp.

Trirhabda canadensis (Kirby)
Chrysomelid spp. I-VIII

Cleridae
Cymatodera oblita Horn
Enoclerus coccineus (Schenckling)
Enoclerus cordifer (LeConte)
Enoclerus quadrisignatus (Say)
Monophylla californica (Fall)
Phyllobaenus sp.l
Phyllobaenus sp. II and III
Trichodes bibalteatus LeConte
near Trichodes

Cryptophagidae
Cryptophagus prob. croceus Zimmerman

Cucujidae
Ahasverus near advena (Waltl.)
Oryzaephilus surinamensis (Linnaeus)

Curculionidae
Apion sp.

Epimechus sp.
Hypera punctata (Fabricius)

Ophryastes sp.

Pandeleteinus sp.

Sitona hispidula (Fabricius)
Smicronyx near interruptus Blatchley
Smicronyx near lutulentus Dietz

Dermestidae
Cryptohopalum festivum Casey
Cryptohopalum fontinal Casey
Trogoderma stenale Jayne

Elateridae
Dicrepidius corvinus Candeze

Histeridae
Hololepta populnea LeConte

Lyctidae
Trogoxylon aequale (Wollaston)

Melyridae
Amecocerus near annulatus Casey

Attalus spp. I-I11
Hypebaeus sp.lI
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Trichochrous sp.

Vecturoides pseudonychus Fall

Mordellidae

Diclidia sp. I and II

Mordella brevistylis Liljeblad

Mordellistena sp.

Pentaria trifasciata (Melsheimer)

Pha]acridae.

Phalacrus sp.

Rhipiceridae
Sandalus californicus Lac.

Tenebrionidae
Tribolium castaneum (Herbst)

Scarabaeidae
Ochsosidia arizonica Casey

CORRODENTIA
Undetermined

PSOCOPTERA
Lachisillidae
Lachesilla sp.

Psocoptera sp.

LEPIDOPTERA
Arctiidae
Estigmene acraea Drury

Geometridae
Geometrid sp.

Lyonetiidae
Bucculatrix sp.

Noctuidae
Tarachidia sp.

Psychidae
Oiketicus townsendi Cockerell

Thyridopteryx ephemeraeformis Haworth

. Pyralidae
Crambus sp.

' Scythridae
Scythris sp.

NN
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"THYSANOPTERA

Thripidae
Franklinella occidentalis (Pergande)
Thripid sp.

HYMENOPTERA (Parasitic)
Dryinidae
Gonatopus sp. .

Mymaridae
Barypolynema saga Girault

REFERENCES

Bibby (1942)

Glinski and Ohmart (1984)
Hopkins and Carruth (1954)
Hefley (1937)

Liesner (Unpub'd. 1971)
Stevens, 1985

Watts et al. (1976)

This study
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