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Abstract
»

We study the application of self-organizing maps (SOMs) for the analyses of remote sensing spectral images. Advanced airborne and
satellite-based imaging spectrometers produce very high-dimensional spectral signatures that provide key information to many scientific
investigations about the surface and atmosphere of Earth and other planets. These new, sophisticated data demand new and advanced
approaches to cluster detection, visualization, and supervised classification. In this article we concentrate on the issue of faithful topological
mapping in order to avoid false interpretations of cluster maps created by an SOM. We describe several new extensions of the standard SOM,
developed in the past few years: the growing SOM, magnification control, and generalized relevance learning vector quantization, and
demonstrate their effect on both low-dimensional traditional multi-spectral imagery and ~ 200-dimensional hyperspectral imagery.
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1. Introduction

In geophysics, geology, astronomy, as well as in many
environmental applications air- and satellite-borne remote
sensing spectral imaging has become one of the most
advanced tools for collecting vital information about the
surface of Earth and other planets. Spectral images consist
‘of an array of multi-dimensional vectors each of which is
assigned to a particular spatial area, reflecting the response
of a spectral sensor for that area at various wavelengths
4(Fig. 1). Classification of intricate, high-dimensional
spectral signatures has turned out to be far from trivial.
Discrimination among many surface cover classes, dis-
covery of spatially small, interesting spectral species proved
to be an insurmountable challenge to many traditional
clustering and classification methods. By customary
measures (such as, for example, principal component
analysis (PCA) the intrinsic spectral dimensionality of
hyperspectral images appears to be surprisingly low, 5-10
at most. Yet dimensionality reduction to such low numbers
has not been successful in terms of preservation of
important class distinctions. The spectral bands, many of
which are highly correlated, may lie on a low-dimensional
but non-linear manifold, which is a scenario that eludes
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many classical approaches. In addition, these data comprise
enormous volumes and are frequently noisy. This motivates
research into advanced and novel approaches for remote
sensing image analysis and, in particular, neural networks
(Merényi, 1999). Generally, artificial neural networks
attempt to replicate the computational power of biological
neural networks, with the following important (incomplete
list of) features:

® adaptivity—the ability to change the internal represen-
tation (connection weights, network structure) if new
data or information are available;

o robustness—handling of missing, noisy ore otherwise
confused data;

e power/speed—handling of large data volumes in accep-
table time due to inherent parallelism;

e non-linearity—the ability to represent non-linear func-
tions or mappings.

Exactly these properties make the application of neural
networks interesting in remote sensing image analysis. In
the present contribution, we will concentrate on a special
neural network type, neural maps. Neural maps constitute an
important neural network paradigm. In brains, neural maps
occur in all sensory modalities as well as in motor areas. In
technical contexts, neural maps are utilized in the fashion of
neighborhood preserving vector quantizers. In both cases
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Fig. 1. Comparison of the spectral resolution of the AVIRIS hyperspectral
imager and the LANDSAT TM imager in the visible and near-infrared
spectral range. AVIRIS represents a quasi-continuous spectral sampling
whereas LANDSAT TM has coarse spectral resolution with large gaps
between the band passes. Additionally, spectral reflectance charateristics of
common earth surface materials is shown: 1, water; 2, vegetation; 3, soil
(from Richards and Jia (1999)).

these networks project data from some possibly high-
dimensional input space onto a position in some output
space. In the area of spectral image analysis we apply neural
maps for clustering, data dimensionality reduction, learning
of relevant data dimensions and visualization. For this
purpose we highlight several useful extensions of the basic
neural map approaches.

This paper is structured as follows. In Section 2 we
briefly introduce the problems in remote sensing spectral
image analysis. In Section 3 we give the basics of neural
maps and vector quantization together with a short review of
new extensions: structure adaptation and magnification
control (Section 3.2), and learning of proper metrics or
relevance learning (Section 3.3). In Section 4 we present
applications of the reviewed methods to multi-spectral

LANDSAT TM imagery as well as very high-dimensional
hyperspectral AVIRIS imagery.

2. Remote sensing spectral imaging

As mentioned earlier air- and satellite-borne remote
sensing spectral images consist of an array of multi-
dimensional vectors assigned to particular spatial regions
(pixel locations) reflecting the response of a spectral sensor
at various wavelengths. These vectors are called spectra. A
spectrum is a characteristic pattern that provides a clue to
the surface material within the respective surface element.
The utilization of these spectra includes areas such as
mineral exploration, land use, forestry, ecosystem manage-
ment, assessment of natural hazards, water resources,
environmental contamination, biomass and productivity;
and many other activities of economic significance, as well
as prime scientific pursuits such as looking for possible
sources of past or present life on other planets. The number
of applications has dramatically increased in the past 10
years with the advent of imaging spectrometers such as
AVIRIS of NASA/JPL, that greatly surpass the traditional
multi-spectral sensors (e.g. LANDSAT thematic mapper
(TM).

Imaging spectrometers can resolve the known, unique,
discriminating spectral features of minerals, soils, rocks,
and vegetation. While a multi-spectral sensor samples a
given wavelength window (typically the 0.4 — 2.5 pm
range in the case of visible and near-infrared imaging)
with several broad bandpasses, leaving large gaps
between the bands, imaging spectrometers sample a
spectral window contiguously with very narrow,
10 — 20 nm badpasses (Fig. 1) (Richards & Jia, 1999).
Hyperspectral technology is in great demand because
direct identification of surface compounds is possible
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Fig. 2. Left: The concept of hyperspectral imaging. Figure from Campbell (1996). Right: The spectral signature of the mineral alunite as seen through the six
broad bands of Landsat TM, as seen by the moderate spectral resolution sensor MODIS (20 bands in this region), and as measured in laboratory. Figure from
Clark (1999). Hyperspectral sensors such as AVIRIS of NASA/JPL (Green, 1996) produce spectral details comparable to laboratory measurements.
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without prior field work, for materials with
known spectral signatures. Depending on the wavelength
resolution and the width of the wavelength window used
by a particular sensor, the dimensionality of the spectra
can be as low as 5-6 (such as in LANDSAT TM), or as
high as several hundred for hyperspectral imagers
(Green, 1996).

Spectral images can formally be described as a matrix
S =v*), where v* € RP is the vector of spectral
information associated with pixel location (x,y). The
elements v, i =1..D, of spectrum v* reflect the
responses of a spectral sensor at a suite of wavelengths
(Fig. 2; Campbell, 1996; Clark, 1999). The spectrum is a
characteristic fingerprint pattern that identifies the surface
material within the area defined by pixel (x,y). The
individual two-dimensional image S;=v{"" at wave-
length i is called the ith image band. The data space ¥~
spanned by visible—near infrared reflectance spectra is
[0 — noise, U + noise]?” C R?» where U > 0 represents
an upper limit of the measured scaled reflectivity and
noise is the maximum value of noise across all spectral
channels and image pixels. The data density 2(¥") may
vary strongly within this space. Sections of the data
space can be very densely populated while other parts
may be extremely sparse, depending on the materials in
the scene and on the spectral bandpasses of the sensor.
According to this model traditional multi-spectral ima-
gery has a low D, value while D, can be several
hundred for hyperspectral images. The latter case is of
particular interest because the great spectral detail,
complexity, and very large data volume pose new
challenges in clustering, cluster visualization, and classi-
fication of images with such high spectral dimensionality
(Merényi, 1998).

In addition to dimensionality and volume, other factors,
specific to remote sensing, can make the analyses of
hyperspectral images even harder. For example, given the
‘richness of data, the goal is to separate many cover classes,
however, surface materials that are significantly different for
an application may be distinguished by very subtle
differences in their spectral patterns. The pixels can be
mixed, which means that several different materials may
contribute to the spectral signature associated with one
pixel. Training data may be scarce for some classes, and
classes may be represented very unevenly. All these
difficulties motivate research into advanced and novel
approaches (Merényi, 1999).

Noise is far less problematic than the intricacy of the
spectral patterns, because of the high signal-to-noise ratios
(500-1500) that present-day hyperspectral imagers provide.
For this discussion, we will omit noise issues, and additional
effects such as atmospheric distortions, illumination geo-
metry and albedo variations in the scene, because these can
be addressed through well-established procedures prior to
clustering or classification.

3. Neural maps and vector quantization
3.1. Basic concepts and notations

Neural maps as tools for (unsupervised) topographic
vector quantization algorithms map data vectors v sampled
from a data manifold ¥~ C RP” onto a set .o/ of neurons r

11’1/_.&/ Y — . (3.1)

Associated with each neuron is a pointer (weight vector)
w, € RP" specifying the configuration of the neural map
W = {w,},e.s. The task of vector quantization is realized
by the map ¥ as a winner-take-all rule, i.e. a stimulus
vector v € ¥~ is mapped onto that neuron s € &/ the
pointer w, of which is closest to the presented stimulus
vector v,

Y, V= 8(v) = argmin d(V, W,). (3.2)

red

where d(v,w,) is the Euclidean distance. The neuron s is
referred to as the winner or best-matching unit. The
reverse mapping is defined as ¥ ,_,4 : r — w,. These two
mappings together determine the neural map

M= Vymsys Yoroy), (3.3)
realized by the network. The subset of the input space
Q. ={ve?y r=Y,_,V)}, (3.4

which is mapped to a particular neuron r according to Eq.
(3.2), forms the (masked) {2 receptive field of that neuron.
If the intersection of two masked receptive fields (2, 2y
is non-vanishing we call (2. and (2. neighbored. The
neighborhood relations form a corresponding graph
structure ¥4, in ./ : two neurons are connected in ¥,
if and only if their masked receptive fields are neighbored.
The graph %, is called the induced Delaunay-graph (See,
for example, Martinetz and Schulten (1994) for detailed
definitions). Due to the bijective relation between neurons
and weight vectors, %, also represents the Delaunay
graph of the weights (Martinetz & Schulten, 1994).

In the most widely used neural map algorithm, the self-
organizing map (SOM) (Kohonen, 1995), the neurons are
arranged a priori on a fixed grid .«¢.! Other algorithms such
as the topology representing network (TRN), which is based
on the neural gas algorithm (NG) (Martinetz, Berkovich, &
Schulten, 1993), do not specify the topological relations
among neurons, but construct a neighborhood structure in
the output space during learning (Martinetz & Schulten,
1994).

In any of these algorithms the pointers are adapted
such that the input data are matched appropriately. For
this purpose a random sequence of data points v € ¥~
from the stimuli distribution £(v) is presented to the map,

! Usually the grid .« is chosen as a d,-dimensional hypercube and then
one has i=(j,....iz,). Yet, other ordered arrangements are also
admissible.
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the winning neuron s is determined according to Eq.
(3.2), and the pointer w, is shifted toward v. Interactions
among the neurons are included via a neighborhood
function determining to what extent the units that are
close to the winner in the output space participate in the
learning step

Aw, = eh)(r,s, V)(V — w,). 3.5
hy(r,s,v) is usually chosen to be of Gaussian shape

_wmwﬂ

3 3.6)

hy(r,s,v) = exp(

where d_,(r,s(v)) is a distance measure on the set .&/.
We emphasize that h,(r,s,v) implicitly depends on the
whole set W of weight vectors via the winner
determination of s according to Eq. (3.2). In SOMs it
is evaluated in the output space < : df?“(r, s(v) =lIr —
s(V)ll, whereas for the NG we have d°(r,s(V)) = (v,
W). k.(v,W) gives the number of pointers w, for which
the relation d(v, wy) = d(v,w,) is valid (Martinetz et al.,
1993), i.e. d° is evaluated in the input space (Here, d(,)
is the Euclidean distance.). In the SOM usually A = 2¢?
is used.

The particular definitions of the distance measures in
the two models cause further differences. In Martinetz
et al. (1993) the convergence rate of the neural gas
network was shown to be faster than that of the SOM.
Furthermore, it was proven that the adaptation rule for
the weight vectors follows, on average, a potential
dynamic. In contrast, a global energy function does not
exist in the SOM algorithm (Erwin, Obermayer, &
Schulten, 1992).

One important extension of the basic concepts of neural
maps concerns the so-called magnification. The standard
SOM distributes the pointers according to the input
distribution

P(W) ~ P(V)°, 3.7

with the magnification factor aSOM=% (Ritter &
Schulten, 1986; Kohonen, 1999).>° For the NG one
finds, by analytical considerations, that for small A the
magnification factor anyg = d/(d + 2) which only depends
on the dimensionality of the input space embedded in
RP¥, i.e. the result is valid for all dimensions (Martinetz
et al., 1993).

Topology preservation or topographic mapping in
neural maps is defined as the preservation of the
continuity of the mapping from the input space onto
the output space, more precisely it is equivalent to the

2 This result is valid for the one-dimensional case and higher-dimensional
ones which separate.

3 The notation ‘magnification factor’ is, strictly speaking, not correct.
Some times it is called (mathematically exact) magnification exponent.
However, the notation ‘magnification factor’ is commonly used (van Hulle,
2000). Therefore we use this notation here.

continuity of ./ between the topological spaces with
properly chosen metric in both «/ and ¥". For lack of
space we refer to Villmann, Der, and Herrmann (1997) for
detailed considerations. For the TRN the metric in .o/ is
defined according to the given data structure whereas in
case of the SOM violations of topology preservation may
occur if the structure of the output space does not match
the topological structure of ¥". In SOMs the topology
preserving property can be used for immediate evaluations
of the resulting map, for instance by interpretation as a
color space, as demonstrated in Section 4.2.2. Topology
preservation also allows the applications of interpolating
schemes such as the parametrized SOM (PSOM) (Ritter,
1993) or interpolating SOM (I-SOM) (Goppert &
Rosenstiel, 1997). A higher degree of topology preser-
vation, in general, improves the accuracy of the map
(Bauer & Pawelzik, 1992). )

As pointed out in Villmann et al. (1997) violations of
topographic mapping in SOMs can result in false
interpretations. Several approaches were developed to
judge the degree of topology preservation for a given
map. Here we briefly describe a variant P of the well
known topographic product P (Bauer & Pawelzik, 1992).
Instead of the Euclidean distances between the
weight vectors, P uses the respective distances dg"(wr,
wy) of minimal path lengths in the induced Delaunay-
graph %, of the w,. During the computation of P for
each node r the sequences nf" (r) of jth neighbors of r in
&/, and nf (r) describing the jth neighbor of w, in 77,
have to be determined. These sequences and further
averaging over neighborhood orders j and nodes r finally
lead to

. 1 N1
P= ———— —log(®), 3.8
Mwngya) (338)
with
v
dgy(wr, Wy (p ) i
P 7)) d(r,n (r) (3.9)

— 44 dg"/ (Wl" wnf(l-)) d;Q/ (r’ n;V (r)) ’

and d_(r,r’) is the distance between the neuron positions
r and r in the lattice .&/. P can take on positive or
negative values with similar meaning as for the original
topographic product P : if P < 0 holds the output space
is too low-dimensional, and for P > 0 the output space is
too high-dimensional. In both cases neighborhood
relations are violated. Only for P =~ 0 does the output
space approximately match the topology of the input
data. The present variant P overcomes the problem of
strongly curved maps which may be judged neighbor-
hood violating by the original P even though the shape
of the map might be perfectly justified (Villmann et al.,
1997).
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3.2. Magnification control and structure adaptation

3.2.1. Magnification control

The first approach to influence the magnification of a
vector quantizer, proposed in DeSieno (1988), is called
the mechanism of conscience yielding approximately the
same winning probability for each neuron. Hence, the
approach yields density matching between input and
output space which corresponds to a magnification factor
of 1. Bauer, Der, and Herrmann (1996) suggested a more
general scheme for the SOM to achieve an arbitrary
magnification. They introduced a local learning parameter
€, for each neuron r with (eg) oc Z(w.)" in Eq. (3.5),
Where m is an additional control parameter. Eq. (3.5) now
reads as

AW, = €h)\ (T, 8, V)(V — Wy). (3.10)

Note that the learning factor € of the winning neuron s is
applied to all updates. This local learning leads to a
similar relation as in Eq. (3.7)

PW) ~ 2(9)?, 3.11)

with o/ = a(m+ 1) and allows a magnification control
through the choice of m. In particular, one can achieve a
resolution of ¢ = 1, which maximizes mutual information
(Linsker, 1989; Villmann & Herrmann, 1998). Application
of this approach to the derivation of the dynamic of TRN
yields exactly the same result (Villmann, 2000).

3.2.2. Structure adaptation

For both neural map types, the SOM and the TRN,
growing variants for structure adaptation are known.

In the growing SOM (GSOM) approach the output .o/
is a hypercube in which both the dimension and the
respective length ratios are adapted during the learning
procedure in addition to the weight vector learning, i.e.
‘the overall dimensionality and the dimensions along the
individual directions change in the hypercube. The GSOM
starts from an initial 2-neuron chain, learns according the
regular SOM-algorithm, adds neurons to the output space
according to a certain criterion to be described later,
learns again, adds again, etc. until a prespecified
maximum number N, of neurons is distributed. During
this procedure, the output space topology remains of the
form ny Xny X ---, with n; = 1 for] > D, where D, is
the current d1mens1ona11ty of .«7.* From there it can grow
either by adding nodes in one of the directions which are
already spanned by the output space or by initialising a
new dimension. This decision is made on the basis of the
receptive fields (2. When reconstructing v € ¥~ from
neuron r, an error ® = v — w, remains decomposed along
the different directions, which results from projecting back

* Hence, the initial configuration is 2X I X 1 X -+, D, = L.

the output grid .« into the input space ¥~

wr-ﬁ-el Wr— €
Za( Ve w1V (3.12)

r+e4 - W —e ”

Here, e; denotes the unit vector in direction i of o, W,
and w, . are the weight vectors of the nelghbors of the
neuron r in the ith direction of the lattice .«/.> Considering
a receptive field (2. and determining the first principle
component pca of £), allows a further decomposition of
v. Projection of v onto the direction of @pc, then yields

ap ,+1(V),

! W " -
v = aDW(v)ﬁ +v. (3.13)

The criterion for the growing now is to add nodes in that
direction which has, on average, the largest of the
expected (normalized) error amplitudes &;

S
nt e, S @) (3.14)

= 1,...,D£¢ + 1

After each growth step, a new learning phase has to take
place, in order to readjust the map. For a detailed study of
the algorithm we refer to Bauer and Villmann (1997).

The growing TRN adapts the number of neurons in TRN
whereby the structure between them is re-arranged accord-
ing to the TRN definition (Fritzke, 1995). Hence, it is
capable of representing the data space in a topologically
faithful manner with increasing accuracy and it also realizes
a structure adaptation.

3.3. Relevance learning

As mentioned earlier neural maps are unsupervised
learning algorithms. In case of labeled data one can apply
supervised classification schemes for vector quantization
(VQ). Assuming that the data are labeled, an automatic
clustering can be learned via attaching maps to the SOM or
adding a supervised component to VQ to achieve learning
vector quantization (LVQ) (Kohonen, Lappalainen, &
Saljarvi, 1997; Meyering & Ritter, 1992). Various modifi-
cations of LVQ exist which ensure faster convergence, a
better adaptation of the receptive fields to optimum
Bayesian decision, or an adaptation for complex data

5 At the border of the output space grid, where not two, but just one
neighboring neuron is available, we use

Wr = Wr—g,
Iw, — We_el
or
Wrie, — Wr
W, e, — w,l
to compute the backprojection of the output space direction e; into the input
space.
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structures, to mention just a few (Kohonen et al., 1997; Sato
& Yamada, 1995; Somervuo & Kohonen, 1999).

A common feature of unsupervised algorithms and LVQ
is the information provided by the distance structure in 7,
which is determined by the chosen metric. Learning heavily
relies on this feature and therefore crucially depends on how
appropriate the chosen metric is for the respective learning
task. Several methods have been proposed which adapt the
metric during training (Kaski, 1998; Kaski & Sinkkonen,
1999; Pregenzer, Pfurtscheller, & Flotzinger, 1996).

Here we focus on metric adaptation for LVQ since the
LVQ combines the elegance of simple and intuitive updates
in unsupervised algorithms with the accuracy of supervised
methods. Let ¢, € & be the label of input v, # a set of
labels (classes) with #.4 = N,. LVQ uses a fixed number
of codebook vectors (weight vectors) for each class. Let
W = {w,} be the set of all codebook vectors and ¢, be the
class label of w,. Furthermore, let W, = {w,lc, = ¢} be the
subset of weights assigned to class ¢ € Z.

The training algorithm adapts the codebook vectors
such that for each class ¢ € ., the corresponding
codebook vectors W, represent the class as accurately as
possible. This means that the set of points in any given class
¥, = {v € ¥lc, = c}, and the union %, = Url,, e, (% of
receptive fields of the corresponding codebook vectors
should differ as little as possible. For a given data point v
with class label ¢, let w(v) denote some function which is
negative if v is classified correctly, i.e. it belongs to a
receptive field (2. with ¢, = ¢,, and which is positive if v is
classified incorrectly, i.e. it belongs to a receptive field (2,
with ¢, #¢,. Let f:R— R be some monotonically
increasing function. The general scheme of GLVQ aims to
minimize the cost function

Cost = ) f(u(¥)), (3.15)

via stochastic gradient descent. Different choices of f and
u(v) yield LVQ or LVQ2.1 as introduced in Kohonen et al.
(1997), respectively, as shown in Sato and Yamada (1995).
Denote by d the squared Euclidean distance of v to the
nearest codebook vector. The choice of f as the sigmoidal
function and

_ dr+ —dp_
nv) = m, (3.16)

where dp_ is the squared Euclidean distance of the input
vector v to the nearest codebook vector labeled with ¢, =
¢y, say Wy, and d;_ is the squared Euclidean distance to the
best matching codebook vector but labeled with ¢, # ¢,
say w,_, yields a powerful and noise tolerant behavior since
it combines adaptation near the optimum Bayesian borders
similarly as in LVQ2.1, with prohibiting the possible
divergence of LVQ2.1 (as reported in Sato and Yamada
(1995)). We refer to this modification as the GLVQ. The
respective learning dynamic is obtained by differentiation of

the cost function (3.15) (Sato & Yamada, 1995)
4f/| M(v)'d _

Awr+ = € m(v - W,.+) and
4f’| J 3.17)
Aw, = —e 2 PO (v w ),
BT

To result a metric adaptation we now introduce input
weights N = (A, ..., Ap ), &; = 0, I\l = 1 in order to allow
a different scaling of the input dimensions: substituting the
squared Euclidean metric by its scaled variant

Dy

X y) =D hx — ), (3.18)
i=1

the receptive field of codebook vector w, becomes

R=(EV :r=¥_ W} (3.19)

with

11’?,‘/__,&/ : v+ s(v) = argmind™(v, w,), (3.20)

red

as mapping rule. Replacing £, by 2 and d by 4 in the cost
function ‘Cost’ in Eq. (3.15) yields a variable weighting of
the input dimensions and hence an adaptive metric. Now
Eq. (3.17) reads as

4-f' -d
Aw,, = G%A(v - W) and
(dr, +dr)
N (3.21)
4-f'1 vy d,
Aw, = — w/\(v - W, ),

@ +ady

with A being the diagonal matrix with entries Aj,...,Ap, .
Appropriate weighting factors A can also be determined
automatically via a stochastic gradient descent. In this way
the GLVQ-learning rule (3.17) is augmented as follows

d)\
A)\k=—61-2f’|#(v)(m(v—wr+)1% \
dy, 5
- m(v -w. )i ), (3.22)

with €; € (0,1)and k = 1...D-, followed by normalization
to obtain Al =1. We term this generalization of the
relevance learning vector quantization (RLVQ) (Bojer,
Hammer, Schunk, & von Toschanowitz, 2001) and GLVQ
generalized relevance learning vector quantization
(GRLVQ) as introduced in Hammer and Villmann (2001a,
2002).

Obviously, the same idea could be applied to any
gradient dynamics. We could, for example, minimize a
different error function such as the Kullback-Leibler
divergence of the distribution which is to be learned and
the distribution which is implemented by the vector
quantizer. This approach is not limited to supervised
tasks. Unsupervised methods such as the NG (Martinetz
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et al.,, 1993), which obey a gradient dynamics, could be
improved by application of weighting factors in order to
obtain an adaptive metric. Furthermore, in unsupervised
topographic mapping models like the SOM or NG one
can try to learn the relevance of input dimensions subject to
the requirement of topology preservation (Hammer &
Villmann, 2001a,b).

3.4. Further approaches

Beside the above introduced methods further approaches
of neural inspired algorithms are well known. In this context
we have to refer to the family of fuzzy-clustering algorithms

*as for instance Fuzzy-SOM (Bezdek & Pal, 1993; Graepel,
Burger, & Obermayer, 1998; Hasenjidger, Ritter, &
Obermayer, 1999), Fuzzy-c-means (Bezdek, Pal, Hathaway,

‘& Karayiannis, 1995; Gath & Geva, 1989) or other (neural)
vector quantizers based on minimization of an energy
function (Bishop, Svensén, & Williams, 1998; Buhmann &
Kiihnel, 1993; Linsker, 1989). For an overview of respective
approaches we refer to Haykin (1994) (neural network
approaches), Duda and Hart, (1973), and Schiirmann (1996)
(pattern classification).

4. Application in remote sensing image analysis

4.1. Low-dimensional data: LANDSAT TM multi-spectral
images

4.1.1. Image description

LANDSAT TM satellite-based sensors produce images
of the Earth in seven different spectral bands. The ground
resolution is 30 X 30 m? for bands 1-5 and band 7. Band 6
(thermal band) is often dropped from analyses because of

"the lower spatial resolution. The LANDSAT TM bands
were strategically determined for optimal detection and
_discrimination of vegetation, water, rock formations and
cultural features within the limits of broad band multi-
spectral imaging. The spectral information, associated with
each pixel of a LANDSAT scene is represented by a vector
v € ¥ C RP” with D, = 6. The aim of any classification
algorithm is to subdivide this data space into subsets of data
points, with each subset corresponding to specific surface
covers such as forest, industrial region, etc. The feature
categories are specified by prototype data vectors (training
spectra).

In the present contribution we consider a LANDSAT TM
image from the Colorado area, USA.° In addition we have a
manually generated label map (ground truth image) for the
assessment of classification accuracy. All pixels of the
Colorado image have associated ground truth labels,
categorized into 14 classes. The classes include several

S Thanks to M. Augusteijn (Univerity of Colorado) for providing this
image.

Table 1
Table of labels and classes occurring in the LANDSAT TM Colorado
image

Class label Ground cover type

Scotch pine
Douglas fir

Pine/fir

Mixed pine forest
Supple/prickle pine
Aspen/mixed pine forest
Without vegetation
Aspen

Water

Moist meadow
Bush land
Grass/pastureland
Dry meadow
Alpine vegetation
Misclassification

os g - ®x-""Dommoaoos

regions of different vegetation and soil, and can be used for
supervised learning schemes like the GRLVQ (Table 1).

4.1.2. Analyses of LANDSAT TM imagery

An initial Grassberger—Procaccia analysis (Grassberger
& Procaccia, 1983) yields D¥” ~ 3.1414 for the intrinsic
dimensionality (ID) of the Colorado image.

SOM analysis. The GSOM generates a 12 X 7 X 3 lattice
(Nmax = 256) in agreement with the Grassberger—Procaccia
analysis (D¥” ~ 3.1414), which corresponds to a P-value
of 0.0095 indicating good topology preservation (Fig. 3).

One way to visualize the GSOM clusters of LANDSAT
TM data is to use a SOM dimension D, = 3 (Gross &
Seibert, 1993) and interpret the positions of the neurons r in
the lattice .o/ as vectors ¢(r) = (r, g, b) in the RGB color
space, where r,g,b are the intensities of the colors red,
green and blue, respectively, computed as ¢;(r) = [(r; —
D/(n; — 1)]255, for 1=1,2,3 (Gross & Seibert, 1993).

OS =X ==T Q020D

Fig. 3. Left: the reference classification for the Landsat TM Colorado
image, provided by M. Augusteijn. Classed are keyed as shown on the color
wedge on the left, and the corresponding surface units are described in
Table 1. Right: cluster map of the Colorado image derived from all six
bands by the 12 X 7 X 3 GSOM-solution. Note that, due to the visualization
scheme, which uses a continuous scale of RGB colors described in the text,
this map does not show hard cluster boundaries. More similar colors
indicate more similar spectral classes.
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Such assignment of colors to winner neurons immediately
yields a pseudo-color cluster map of the original image for
visual interpretation. Since we are mapping the data clouds
from a six-dimensional input space onto a three-dimen-
sional color space dimensional conflicts may arise and the
visual interpretation may fail. However, in the case of
topologically faithful mapping this color representation,
prepared using all six LANDSAT TM image bands,
contains considerably more information than a customary
color composite combining three TM bands (frequently
bands 2, 3, and 3). (Gross & Seibert, 1993).

Application of GRLVQ. We trained the GRLVQ with 42
codebook vectors (three for each class) on 5% of the data set
until convergence. The algorithm converged in < 10 cycles
for e =0.1 and €; =0.01. The GRLVQ produced a
classification accuracy of about 90% on the training set as
well as on the entire data set. The weighting factors resulting
from GRLVQ analysis provide a ranking of the data
dimensions

A =(0.1,0.17,0.27,0.21,0.26,0.0). 4.1)

Clearly, dimension 6 is ranked as least important with
weighting factor close to 0. Dimension 1 is the second least
important followed by dimensions 2 and 4. Dimensions 3
and 5 are of similarly high importance according to this
ranking. If we prune dimensions 6, 1, and 2, an accuracy of
84% can still be achieved. Pruning dimension 4 brings the
classification accuracy down to 50%, which is a very
significant loss of information. This indicates that the
intrinsic data dimension may not be as low as 2. These
classification results are shown in Fig. 4 with misclassified
pixels colored black and classes keyed by the color wedge.

Use of the scaled metric (3.18) during training (which is
equivalent to having a new input space ¥",) of a GSOM
results in a two-dimensional lattice structure the size of
which is 11 X 10. This is in agreement with a corresponding
Grassberger—Procaccia estimate of the intrinsic data
dimension as D{? ~ 2.261 when this metric is applied.
However, as we saw above and in Fig. 4, reducing the
dimensionality of this Landsat TM image to 2 is not as
simple as discarding the four input image planes that
received the lowest weightings from the GRLVQ. Both the
Grassberger—Procaccia estimate and the GSOM suggest the
intrinsic dimension of 2 for ¥”) whereas the dimension
suggested by GRLVQ is at least 4. Hence, the (scaled) data
lie on a two-dimensional submanifold in ¥"\. The
distribution of weights for the two-dimensional lattice
structure is visualized in Fig. 5 for each original (but scaled)
input dimension. All input dimensions, except the fourth,
seem to be correlated. The fourth dimension shows a clearly
different distribution which causes a two-dimensional
representation. The corresponding clustering, visualized in
the two-dimensional (r, g, 0) color space is depicted in Fig.
4. Based on visual inspection this cluster structure compares
better with the reference classification in Fig. 4, upper left,
than the GSOM clustering in Fig. 4. The scaling information

Fig. 4. GRLVQ results for the Landsat TM Colorado image. Upper left:
GRLVQ without pruning. Upper right: GRLVQ with pruning of dimensions
1, 2, and 6. Lower left: GRLVQ with pruning dimensions 1, 2, 6, and 4.
Lower right: Clustering of the Colorado image using GSOM with GRLVQ
scaling. For the three supervised classifications, the same color wedge and
class labels apply as in Fig. 3, left.

provided to the GSOM by GRLVQ based on training labels
seems to have improved the quality of the clustering.

4.2. Hyperspectral data: the lunar crater volcanic field
AVIRIS image

4.2.1. Image description
A visible—near infrared (0.4-2.5 wm), 224-band,
20 m/pixel AVIRIS image of the lunar crater volcanic

0.112

Fig. 5. The distribution of weight values in the two-dimensional 11 X 10
GSOM lattice for the non-vanishing input dimensions 1-5 as a result of
GRLVQ-scaling of the Colorado image during GSOM training. Dimension
4 has significantly different weight distribution from all others, while in the
rest of the dimensions the variations are less dramatic. (Please note that the
scaling is different for each dimension.) For visualization the SOM-
Toolbox provided by the Neural Network Group at Helsinki University of
Technology was used.
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field (LCVF), Nevada, USA, was analyzed in order to study
SOM performance for high-dimensional remote sensing
spectral imagery. (AVIRIS is the airborne visible-near
infrared imaging spectrometer, developed at NASA/Jet
Propulsion Laboratory. See http://makalu.jpl.nasa.gov for
details on this sensor and on imaging spectroscopy). The
LCVF is one of NASA’s remote sensing test sites, where
images are obtained regularly. A great amount of accumu-
lated ground truth from comprehensive field studies
(Arvidson et al., 1991) and research results from indepen-
dent earlier work such as Farrand (1991) provide a detailed
basis for the evaluation of the results presented here.
Fig. 6 shows a natural color composite of the LCVF with
“labels marking the locations of 23 different surface cover
types of interest. This 10 X 12 km” area contains, among
other materials, volcanic cinder cones (class A, reddest
'peaks) and weathered derivatives thereof such as ferric
oxide rich soils (L, M, W), basalt flows of various ages (F,
G, 1), a dry lake divided into two halves of sandy (D) and
clayey composition (E); a small rhyolitic outcrop (B); and
some vegetation at the lower left corner (J), and along
washes (C). Alluvial material (H), dry (N,O,P,U) and wet
(Q,R,S,T) playa outwash with sediments of various clay
contents as well as other sediments (V) in depressions of the
mountain slopes, and basalt cobble stones strewn around the
playa (K) form a challenging series of spectral signatures for
pattern recognition (Merényi, 1998). A long, NW-SE
trending scarp, straddled by the label G, borders the
vegetated area. Since this color composite only contains
information from three selected image bands (one red, one

green, and one blue), many of the cover type variations
remain undistinguished. They will become evident in the
cluster and class maps below.

After atmospheric correction and removal of excessively
noisy bands (saturated water bands and overlapping detector
channels), 194 image bands remained from the original 224.
These 194-dimensional spectra are the input patterns in the
following analyses.

The spectral dimensionality of hyperspectral images is
not well understood and it is an area of active research.
While many believe that hyperspectral images are highly
redundant because of band correlations, others maintain an
opposite view. Few investigations exist into the ID of
hyperspectral images. Linear methods such as PCA or
determination of mixture model endmembers (Adams,
Smith, & Gillespie, 1993; R.S. Inc, 1997) usually yield
3-8 ‘endmembers’. Optimally topology preserving maps, a
TRN approach (Bruske & Merényi, 1999), finds the spectral
ID of the LCVF AVIRIS image to be between 3 and 7
whereas the Grassberger—Procaccia estimate (Grassberger
& Procaccia, 1983) for the same image is D¥” =~ 3.06.
These surprisingly low numbers, that increase with
improved sensor performance (Green & Boardman, 2000),
result from using statistical thresholds for the determination
of what is ‘relevant’, regardless of application dependent
meaning of the data.

The number of relevant components increases dramati-
cally when specific goals are considered such as what cover
classes should be separated. With an associative neural
network, Pendock (1999) extracted 20 linear mixing

Fig. 6. The Lunar Crater Volcanic Field. RGB natural color composite from an AVIRIS, 1994 image. The full hyperspectral image comprises 224 image bands
over the 0.4—2.5 wm wavelength range, 512 X 614 pixels, altogether 140 MB of data. Labels indicate 23 different cover types described in the text. The ground

resolution is 20 m/pixel.
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endmembers from a 50-band (2.0-2.5 pm) segment of an
AVIRIS image of Cuprite, Nevada (another well known
remote sensing test site), setting only a rather general
surface texture criterium. Benediktsson et al. (1994)
performed feature extraction on an AVIRIS geologic
scene of Iceland, which resulted in 35 bands. They used
an ANN (the same network that performed the classification
itself) for decision boundary feature extraction (DBFE). The
DBFE is claimed to preserve all features that are necessary
to achieve the same accuracy by using all the original data
dimensions, by the same classifier for predetermined
classes. However, no comparison of classification accuracy
was made using the full spectral dimension to support the
DBFE claim. In their study a relatively low number of
classes, 9, were of interest, and the goal was to find the
number of features that describe those classes. Separation of
a higher number of classes may require more features.

It is not clear how feature extraction should be done in
order to preserve relevant information in hyperspectral
images. Selection of 30 bands from our LCVF image by any
of several methods leads to a loss of a number of the
originally determined 23 cover classes. One example is
shown in Fig. 8. Wavelet compression studies on an earlier
image of the the same AVIRIS scene (Moon & Merényi,
1995) conclude that various schemes and compression rates
affect different spectral classes differently, and none was
found overall better than another, within 25-50% com-
pressions (retaining 75—50% of the wavelet coefficients). In
a study on simulated, 201-band spectral data, (Benediktsson
et al., 1990) show slight accuracy increase across classifi-
cations on 20-, 40-, and 60-band subsets. However, that
study is based on only two vegetation classes, the feature
extraction is a progressive hierarchical subsampling of the
spectral bands, and there is no comparison with using the
full, 201-band case. Comparative studies using full spectral
resolution and many classes are lacking, in general, because
few methods can cope with such high-dimensional data
technically, and the ones that are capable (such as minimum
distance, parallel piped) often perform too poorly to merit
consideration.

Undesirable loss of relevant information can result using
any of these feature extraction approaches. In any case,
finding an optimal feature extraction requires great
preprocessing efforts just to tailor the data to available
tools. An alternative is to develop capabilities to handle the
full spectral information. Analysis of unreduced data is
important for the establishment of benchmarks, exploration
and novelty detection; as well as to allow for the distinction
of significantly greater number of cover types than from
traditional multi-spectral imagery (such as LANDSAT TM),
according to the purpose of modern imaging spectrometers.

4.2.2. SOM analyses of hyperspectral imagery

A systematic supervised classification study was con-
ducted on the LCVF image (Fig. 6), to simultaneously
assess loss of information due to reduction of spectral

dimensionality, and to compare performances of several
traditional and an SOM-based hybrid ANN classifier. The
23 geologically relevant classes indicated in Fig. 6 represent
a great variety of surface covers in terms of spatial extent,
the similarity of spectral signatures (Merényi, 1998), and the
number of available training samples. The full study,
complete with evaluations of classification accuracies, is
described in Merényi and Farrand (2003). Average spectral
shapes of these 23 classes are also shown in Merényi (1998).

Fig. 7, top panel, shows the best classification, with
92% overall accuracy, produced by an SOM-hybrid ANN
using all 194 spectral bands for input. This ANN first
learns in an unsupervised mode, during which the input
data are clustered in the hidden SOM layer. In this version*
the SOM uses the conscience mechanism of DeSieno
(1988), which forces density matching (i.e. a magnifi-
cation factor of 1) as pointed out in Section 3.2 and’
illustrated for this particular LCVF image and SOM
mapping in Merenyi (2000). After the convergence of the
SOM, the output layer is allowed to learn class labels via
a Widrow—Hoff learning rule. The preformed clusters in
the SOM greatly aid in accurate and sensitive classifi-
cation, by helping prevent the learning of inconsistent
class labels. Detailed description of this classifier is given
in several previous scientific studies, which produced
improved interpretation of high-dimensional spectral data
compared to earlier analyses (Howell, Merényi, &
Lebofsky, 1994; Merényi, Singer, & Miller, 1996;
Merényi et al., 1997). Training samples for the supervised
classifications were selected based on field knowledge.
The SOM hidden layer was not evaluated and used for
identification of spectral types (SOM clusters) prior to
training sample determination. Fig. 7 reflects the geolo-
gist’s view of the desirable segmentation.

In order to apply maximum likelihood and other
covariance based classifiers, the number of spectral:
channels needed to be reduced to 30, since the maximum
number of training spectra that could be identified for shape
all classes was 31. Dimensionality reduction was performed
in several ways, including PCA, equidistant subsampling,
and band selection by a domain expert. Band selection by
domain expert proved most favorable. Fig. 7, bottom panel,
shows the maximum likelihood classification with 30 bands,
which produced 51% accuracy. A number of classes
(notably the ones with subtle spectral differences, such as
N, Q, R, S, T, V, W) were entirely lost. Class K (basalt
cobbles) disappeared from most of the edge of the playa,
and only traces of B (rhyolitic outcrop) remained. Class G
and F were greatly overestimated. Although the ANN
classifier produced better results (not shown here) on the
same 30-band reduced data set than the maximum like-
lihood, a marked drop in accuracy (to 75% from 92%)
occurred compared to classification on the full data set. This
emphasizes that accurate mapping of ‘interesting’, spatially
small geologic units is possible from full hyperspectral
information and with appropriate tools.
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Fig. 7. Top: SOM-hybrid supervised ANN classification of the LCVF scene, using 194 image bands. The overall classification accuracy is 92% (Merényi &
Farrand 2003). Bottom: maximum likelihood classification of the LCVF scene. 30, strategically selected bands were used due to the limited number of training

samples for a number of classes. Considerable loss of class distinction occurred compared to the ANN classification, resulting in an overall accuracy of 51%.
‘bg’ stands for background (unclassified pixels).
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Fig. 8. Clusters identified in a 40 X 40 SOM. The SOM was trained on the

entire 194-band LCVF image, using the DeSieno algorithm (DeSieno,
1988).

Discovery in Hyperspectral Images with a SOM. The
previous section demonstrated the power of the SOM in
helping to discriminate among a large number of pre-
determined surface cover classes with subtle differences in
the spectral patterns, using the full spectral resolution. It is
even more interesting to examine the SOM’s performance
for the detection of clusters in high-dimensional data. Fig. 8
displays a 40X 40 SOM trained with the conscience
algorithm (DeSieno, 1988). The input data space was the
entire 194-band LCVF image. Groups of neurons, altogether
32, that were found to be sensitized to groups of similar
spectra in the 194-dimensional input data, are indicated by
various colors. The boundaries of these clusters were
determined by a somewhat modified version of the U-
matrix method (Ultsch, 1992). The density matching
property of this variant of the SOM facilitates proper
mapping of spatially small clusters and therefore increases
the possibility of discovery. Examples of discoveries are
discussed later. Areas where no data points (spectra) were
mapped are the grey corners with uniformly high fences,
and are relatively small. The black background in the SOM
lattice shows areas that have not been evaluated for cluster
detection. The spatial locations of the image pixels mapped
onto the groups of neurons in Fig. 8, are shown in the same
colors in Fig. 9. In both Fig. 8 and Fig. 9, color coding for
clusters that correspond to classes or subclasses of those in
Fig. 7, top, is the same as in Fig. 7, to show similarities.
Colors for additional groups were added.

The first observation is the striking correspondence
between the supervised ANN class map in Fig. 7, top panel,
and this clustering: the SOM detected all classes that were

Fig. 9. The clusters from Fig. 8 remapped to the original spatial image, to

show where the different spectral types originated from. The relatively

large, light grey areas correspond to the black, unevaluated parts of the,
SOM in Fig. 8. Ovals and rectangles highlight examples of small classes

with subtle spectral differences, discussed in the text. 32 clusters were

detected, and found geologically meaningful, adding to the geologist’s view

reflected in Fig. 7, top panel.

known as meaningful geological units. The ‘discovery’ of
classes B (rhyolitic outcrop, white), F (young basalt flows,
dark grey and black, some shown in the black ovals), G (a
different basalt, exposed along the scarp, dark blue, one
segment outlined in the white rectangle), K (basalt cobbles,
light blue, one segment shown in the black rectangle), and
other spatially small classes such as the series of playa
deposits (N, O, P, Q, R, S, T) is significant. This is the
capability we need for sifting through high-volume, high-
information-content data to alert for interesting, novel, or
hard-to-find units. The second observation is that the SOM
detected more, spatially coherent, clusters than the number
of classes that we trained for in Fig. 7. The SOM’s view of
the data is more refined and more precise than that of the

geologist’s. For example, class A (in Fig. 7) is split here into |

a red (peak of cinder cones) and a dark orange (flanks of
cinder cones) cluster that make geologic sense. The maroon,
cluster to the right of the red and dark orange clusters at the
bottom of the SOM fills in some areas that remained
unclassified (bg) in the ANN class map, in Fig. 7. An
example is the arcuate feature at the base of the cinder cone
in the white oval that apparently contains a material
different enough to merit a separate spectral cluster. This
material fills other areas, also unclassified in Fig. 7,
consistently at the foot of cinder cones (another example
is seen in the large black oval). Evaluation of further
refinements are left to the reader. Evidence that the SOM
mapping in Fig. 9 approximates an equiprobabilistic
mapping (that the magnification factor for the SOM in
Fig. 9 is close to 1), using DeSieno’s algorithm, is presented
in Merenyi (2000).

GSOM analysis of the LCVF hyperspectral image. As
mentioned earlier, earlier investigations yielded an intrinsic
spectral dimensionality of 3-7 for the LCVF data set

¥
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Fig. 10. GSOM-generated cluster map of the same 194 band hyperspectral
image of the Lunar Crater Volcanic Field, Nevada, USA, as in Fig. 7. It
~shows groups similar to those in the supervised classification map in Fig. 7,
top panel. Subtle spectral units such as B, G, K, Q, R, S, T were not
separated, however, and for example, the yellow unit appears at both the
locations of known young basalt deposits (class F, black, in Fig. 7, top
panel) and at locations of alluvial deposits (class H, orange, in Fig. 7).

(Bruske & Merényi, 1999). The Grassberger—Procaccia
estimate (Grassberger & Procaccia, 1983) D¥’ =~ 3.06
corroborates the lower end of the above range, suggesting
that the data are highly correlated, and therefore a drastic
dimensionality reduction may be possible. However, a
faithful topographic mapping is necessary to preserve the
information contained in the hyperspectral image. In
addition to the conscience algorithm explicit magnification
control (Bauer et al., 1996) according to Eq. (3.10) and the
growing SOM (GSOM) procedure, as extensions of
the standard SOM, are suitable tools (Villmann, 2002).
The GSOM produced a lattice of dimensions 8 X 6 X 6 for
the LCVF image, which represents a radical dimension
reduction, and it is in agreement with the Grassberger—
“Procaccia analysis earlier. The resulting false color
visualization of the spectral clusters is depicted in Fig. 10.
It shows a segmentation similar to that in the supervised
classification in Fig. 7, top panel. Closer examination
reveals, however, that a number of the small classes with
subtle spectral differences from others were lost (B, G, K, Q,
R, S, T classes in Fig. 7, top panel). In addition, some
confusion of classes can be observed. For example, the
bright yellow cluster appears at locations of known young
basalt outcrops (class F, black, in Fig. 7, and it also appears
at locations of alluvial deposits (class H, orange in Fig. 7,
top panel). This may inspire further investigation into the
use of magnification control, and perhaps the growth criteria
in the GSOM.

5. Conclusion

SOMs have been showing great promise for the
analyses of remote sensing spectral images. With recent

advances in remote sensor technology, very high-dimen-
sional spectral data emerged and demand new and
advanced approaches to cluster detection, visualization,
and supervised classification. While standard SOMs
produce good results, the high dimensionality and large
amount of hyperspectral data call for very careful
evaluation and control of the faithfulness of topological
mapping performed by SOMs. Faithful topological map-
ping is required in order to avoid false interpretations of
cluster maps created by an SOM. We summarized several
new approaches developed in the past few years.
Extensions to the standard Kohonen SOM, the growing
SOM, magnification control, and GRLVQ were discussed
along with the modified topographic product P. These
ensure topology preservation through mathematical con-
siderations. Their performance, and relationship to a
former powerful SOM extension, the DeSieno conscience
mechanism was discussed in the framework of case
studies for both low-dimensional traditional multi-spectral,
and very high-dimensional (hyperspectral) imagery. The
Grassberger—Procaccia analysis served for an independent
estimate of the determination of ID to benchmark ID
estimation by GSOM and GRLVQ. While we show some
excellent data clustering and classification, there remains
certain discrepancy between theoretical considerations and
application results, notably with regard to ID measures
and the consequences of dimensionality reduction to
classification accuracy. This will be targeted in future
work. Finally, since it is outside the scope of this
contribution, we want to point out that full scale
investigations such the LCVF study also have to make
heavy use of advanced image processing tools and user
interfaces, to handle great volumes of data efficiently, and
for effective graphics/visualization. References to such
tools are made in the cited literature on data analyses.
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