
A COMMON PROGRAMMING FRAMEWORK FOR DISTRIBUTED HYDROLOGIC
MODELING RESEARCH: AN OVERVIEW OF THE ARCHITECTURE

Zhengtao Cui, Hydrology Laboratory, Office of Hydrologic Development,

National Weather Service, NOAA, Silver Spring, MD, Zhengtao.Cui@noaa.gov;
Victor Koren, Hydrology Laboratory, Office of Hydrologic Development,

National Weather Service, NOAA, Silver Spring, MD, Victor.Koren@noaa.gov;
Fekadu Moreda, Hydrology Laboratory, Office of Hydrologic Development,

National Weather Service, NOAA, Silver Spring, MD, Fekadu.Moreda@noaa.gov;
Michael Smith, Hydrology Laboratory, Office of Hydrologic Development,

National Weather Service, NOAA, Silver Spring, MD, Michael.Smith@noaa.gov;

Abstract
 It is a common task for distributed hydrologic modelers to enhance an existing model by
adding new components/models or modifying existing components/models. In addition, to test
the enhanced model, scientists normally need to 1) run the model with various configurations
and, 2) input/output various sets of variables for better understanding. One caution is that
models can easily become unmanageable as they are enhanced, leading to solutions that are very
expensive to develop and difficult to maintain and extend. This presentation introduces the
architectural features of a manageable programming framework designed to facilitate distributed
hydrologic modeling research.

A programming framework typically is a hierarchy of node classes and functions that
provides services to a theory of the problem domain. It is developed when many applications are
going to be developed within a specific problem domain. Application programmers extend the
framework by providing leaf classes in the hierarchy and reuse the services provided by the
framework. Therefore, both design and code are reused to avoid reinventing the wheel, yet the
specific actions should be supplied by the application programmer to solve his/her particular
problem. The common programming framework for distributed hydrologic modeling research
introduced here is an evolutionary step in the research and development program of the
Hydrology Laboratory.

Most commonly available systems use the object-oriented approach to predefine a set of

data abstractions (abstract classes). Typically, these systems are then extended via inheritance of
these predefined data abstractions. One drawback of this approach is that the extensions are
constrained to the predefined set of data abstractions. This paper presents our approach which
combines object-oriented design and generic programming techniques to ensure that the
framework is modular and scalable. In addition to inheritance, the resulting framework can be
extended by templates as well, adding one more degree of freedom when extending the
framework. Our approach affords other benefits such as type-safe and performance gains. Other
architectural features such as using graph theory to manage distributed data sets, using the object
factory design pattern to select simulations at runtime, and the C and FORTRAN programming
interface are also discussed. The framework has been implemented in C++ programming
language.

 The framework is designed to be modular. Each module contains one or more classes.
The modules are organized into layers. Upper layers depend on lower layers. Lower layers do
not know the existence of upper layers. Modules in the same layer are independent of each other.

 Among various classes defined in the modules, there are three interactive core classes:
the HydroDomain, the Model, and the ModelObjectFactory. The class HydroDomain manages
the physical geographic area on which hydrologic simulation will be performed. A
HydroDomain is a watershed consisting of cells. There are two kinds of HydroDomains:
connected and unconnected. In a connected domain, a cell is linked to one of its neighboring
cells by its flow direction. An unconnected domain is the same as a connected domain except
that the flow connectivity of the grid cells is either unknown or irrelevant. Although rainfall
excess and overland flow cannot be routed from cell to cell in un-connected domains, these
quantities are nonetheless informative from a water balance standpoint. The HydroDomain
concept has been implemented using graph theory to solve problems such as visiting each cell in
a particular order. The HydroDomain is also implemented as a class template. One of its
template parameters specifies cell properties. Thus, cell properties could be customized by
developers according to their model’s particular needs. For example, a developer might extend
the framework by defining triangle cells or sub-basins with irregular shape, etc. to fit a particular
modeling requirement.

 The class Model is designed as an abstract base class template. It acts as the common
interface for various concrete hydrologic models. The class Model can be extended by both
inheritance and by template. The framework uses the object factory design pattern to create
model objects at runtime for user’s selection.

 The ModelObjectFactory class was designed to create instances of various Model classes
at run-time without modifying existing code when adding new models or components. Because
programming languages such as C++ are strongly typed, before an object can be created, its type
has to be known. However, in this design, which Model to run is selected by users at run-time.
What users know is only the model name, normally a string that identifies the Model class, not
the Model class itself designed by the programmer. Using ‘switch’-like statements will not work
because the code has to be modified for each newly added model. The ModelObjectFactory
class delays the creation of class instances until run-time by knowing only the type info such as a
string.

The framework also contains C and FORTRAN programming interfaces. We recognize
that many scientists are not proficient in object oriented programming and many existing codes
were written in C or FORTRAN. Therefore C and FORTRAN programmers can work within this
framework without switching to C++ and codes written in C or FORTRAN can be easily
incorporated. The investment in C and FORTRAN is protected.

 Although the framework was designed for distributed hydrologic research, its design
philosophy and data structures described here could help develop an operational model too. For
example, the HydroDomain class template could also be an underlying structure of an
operational model to take advantages of graph theory. The object factory design pattern,
ModelObjectFactory, can be used to select models at run-time. From the point of view of

maintenance, the object-oriented design and generic programming techniques produce a modular
and type-safe framework. Modular means errors are localized and type-safe means errors are
caught at compilation-time instead of run-time.

 When working within this framework, modelers are afforded the following advantages:
a) new models can be added with minimal effort, b) model data are managed by a graph object,
therefore various graph algorithms can be applied to solve problems such as visiting cells within
a watershed in a particular order, c) a subset of models can be chosen to run in a simulation, d) a
C and FORTRAN programming interface is provided to protect a modeler’s investment in these
languages, e) the resulting model is computationally efficient, and f) the framework has
predefined simulation algorithms therefore no additional programming is needed to input/output
grid and time series data after a new model is added.

