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Abstract  Better estimation of a priori gridded parameters is a significant element in the 
operational implementation of a distributed hydrologic model in the National Oceanic and 
Atmospheric Administration’s (NOAA) National Weather Service.  Improved a priori 
parameters have the potential to reduce the cost of calibration of distributed hydrologic models.  
Calibration costs are a key hurdle to overcome in using distributed models to improve water 
resources, flood, and flash flood forecasting capabilities for the United States.  An initial effort in 
deriving a priori gridded model parameters was based on a relatively coarse-resolution GIS-
compatible soils property database, the State Soil Geographic Database (STATSGO).  There are 
limitations in using the STATSGO data because the desired modeling scale has a higher spatial 
resolution than the data.  With the existence and greater availability of finer-scale soils data, the 
county-level Soil Survey Geographic Database (SSURGO), together with the 30m resolution of 
land cover and land use within each soil polygon, we are attempting to improve upon our initial 
estimation methodology.  The effects of SSURGO-based model parameters on distributed 
simulations were analyzed for several basins in the United States through comparisons to the 
simulations using STATSGO-based model parameters.  Simulated hourly flow time series from 
both SSURGO-based and STATSGO-based cases are compared to hourly observed data to 
evaluate the relative performance.  Some improvements from using SSURGO-based a priori 
instead of STATSGO-based parameters were observed. 
 

INTRODUCTION 
 
The Sacramento Soil Moisture Accounting Model (SAC-SMA) used at NOAA’s National 
Weather Service River Forecast Centers (NWS RFCs) needs to be calibrated in order to get an 
accurate set of parameters for hydrologic forecasting.  Because simulation statistics can be 
similar with different sets of parameters, a challenge in model calibration is not only to produce a 
good fit between simulated and observed data but to maintain spatial consistency in parameter 
derivation and make parameter adjustments that are consistent with the conceptual model.  
Parameter inconsistency will limit the transferability of parameters across basins in a region.  
The availability of initial parameter values that reflect the spatial variability of land surface 
properties in a meaningful way can help to address this problem.  The availability of reasonable 
initial parameter sets is even more critical in the case of distributed parameter modeling where 
the intra-basin spatial variability of parameters must be specified.  The potential benefits of 
better initial parameter estimates include both reducing the cost of calibration and improving 
simulations for ungauged basins (Koren, et al., 2000; Carpenter and Georgakakos, 2004).  By 
reducing the subjectivity in calibration, use of gridded a priori model parameters will assist with 
reproducibility and producing reasonable distributions of parameters over a large region or 
across different regions.  



 
In current operational practice, most hydrological models are lumped (that is, a single set of 
parameter values apply to the entire geographic extent of a hydrologic basin) and the required 
manual or automated calibration procedures are well defined.  With the availability of spatially 
detailed data, increased computer processing power, and ever increasing demand for localized 
information, more distributed hydrological models are being developed and applied for both 
research and operational uses (Abbott, et al., 1986; Bell and Moore, 1998; Koren et al., 2004; to 
name a few).  One of the challenges with distributed modeling is to derive a set of initial 
parameters that are based on a basin’s physical properties to assist with manual or automatic 
calibration.  
 
Koren at al. (2000) developed a systematic approach that uses the National Resources 
Conservation Service (NRCS) State Soil Geographic Database (STATSGO) to derive eleven 
SAC-SMA parameters nationwide with the grid size of about 16 km2.  The STATSGO data are 
available at the scale of 1:250,000.  The soil polygons defined in the STATSGO often range in 
size from about 100 to 200 km2.  Although the STATSGO based gridded parameters provide a 
good estimation of initial values for distributed modeling as shown in the Distributed Model 
Intercomparison Project (DMIP) (Smith, et al., 2004), there is a potential for improvement. 
 
One opportunity for improvement is to use the NRCS Soil Survey Geographic Database 
SSURGO data which has a resolution approximately 10 times higher than that of STATSGO 
data in terms of areas of soil polygons.  Digitization of these county level data is work in 
progress.  The completion of SSURGO data coverage for whole USA is expected by 2008 
(http://www.ncgc.nrcs.usda.gov/products/datasets/ssurgo).  A second opportunity is to explicitly 
use landuse/landcover data in conjunction with soil property data as input to the estimation 
process.  In deriving an initial STATSGO-based parameter set for the conterminous United 
States, Koren et al. (2000) assumed “pasture or range land use” under “fair” hydrologic 
conditions. 
 
Prior to embarking on extensive processing necessary to derive SSURGO-based parameters over 
large areas, it is prudent to evaluate the potential benefits for hydrological modeling that may be 
achieved using the new higher resolution data set.  However, there are only a few published 
papers that describe the comparisons of the impact of using STATSGO-based parameters and 
SSURGO-based parameters on simulated results.  In comparing outlet streamflow simulations 
using STASGO-based and SSURGO-based parameter estimates for the Little Washita watershed 
(600 km2) in Oklahoma, Reed (1998) found little difference between the two cases.  Part of the 
reason was that the overall surface soil texture distributions defined by STATSGO and SSURGO 
are similar for this basin.  Anderson et al. (2005) ran the SAC-SMA model for several basins in 
the Ohio River Forecasting Center (OHRFC) and the West Gulf River Forecasting Center 
(WGRFC) of NWS using STATSGO-based and SSURGO-based parameters.  Lumped 
simulations in which averaged parameter values were used for each basin were created and 
compared.  Anderson et al. (2005) used the 1992 National Land Cover Dataset (NLCD) (30 
meter resolution) in combination with STATSGO and SSURGO soil data to estimate SAC-SMA 
parameters.  In these cases Anderson found improvement of outlet flow simulation performance 
using SSURGO data where there is a considerable difference in soil texture distributions as 
derived based on STASGO and SSURGO data.  Since in their work averaged parameters were 
used in a lumped simulation mode, much of spatial variation effect of soil texture on 
hydrological response within a basin was lost.  Study of the impact of SSURGO-based gridded 
parameters for distributed modeling is necessary in order to take full advantage of the fine-scaled 



SSURGO data and possibly improve simulations for small basins where STATGO data are too 
coarse to resolve intra-basin variations. 
 

METHODS 
 

The work presented here is based on gridded SAC-SMA parameters using SSURGO soil data.  
These gridded parameters were derived using similar approaches to those used by Koren et al. 
(2000) and Anderson et al. (2005).  Initial parameter values were calculated for each soil 
polygon defined in the SSURGO data set.  These parameter maps of polygons were then 
transformed to gridded data through area-weighted averaging at the resolution desired.  The 
derived SSURGO-based and STATSGO-based a priori parameters were then used in the 
Hydrology Laboratory Research Modeling System (HLRMS) (Koren et al., 2004) to produce 
distributed simulations.  In both cases, a kinematic wave overland flow and channel routing 
model was used.  There were no calibrations for either case.  Results from the two cases were 
compared and analyzed.  
 

TEST BASINS AND RESULTS 
 
Eleven basins located in the states of Oklahoma and Arkansas were selected to run HLRMS in 
distributed mode at an hourly time step.  Table 1 and Figure 1 show the basin information and 
location map.  Some of the basins were studied in the Distributed Intercomparison Project 
(DMIP) (Smith et al., 2004; Reed et al., 2004).  Therefore, extensive hydrological data have been 
collected and are available for these basins.  Hourly gridded radar precipitation data are available 
from June 1993 on.  Hourly observed flow data at each basin’s outlet were obtained from the U.S. 
Geological Survey (USGS).  The archived hourly flow data downloaded are provisional with no 
quality control by the USGS yet.  However, scientists in the Hydrology Laboratory of NWS did 
some rudimentary quality control by comparing to USGS official daily flow data and setting 
suspicious hourly data to missing.  The SSURGO soil data were downloaded from the Geospatial 
Data Gateway (http://datagateway.nrcs.usda.gov) maintained by the NRCS. Land cover data at a 
30 m resolution were obtained from the 1992 National Land Cover Dataset (NLCD) through 

Table 1  Basin information

No. USGS 
No. 

Short 
Name Station Name Area 

(km2) 

1 7195800 SPRINGT Flint Creek at Springtown  AR 36.8 
2 7195865 SSILOAM Sager Creek near West Siloam Springs  OK 48.9 
3 7196973 CHRISTI Peacheater Creek at Christie  OK 64.7 
4 7196900 DUTCH Baron Fork at Dutch Mills  AR 105.1 
5 7196000 KNSO2 Flint Creek near Kansas  OK 284.9 
6 7195000 ELMSP Osage Creek near Elm Springs  AR 336.7 
7 7191220 SYCAM Spavinaw Creek near Sycamore  OK 344.5 
8 7197000 ELDO2 Baron Fork at Eldon  OK 795.1 
9 7195430 ISILOAM Illinois River South of Siloam Springs  AR 1489.2 
10 7195500 WTTO2 Illinois River near Watts  OK 1644.6 
11 7196500 TALO2 Illinois River near Tahlequah  OK 2483.7 



Seamless Data Distribution (http://seamless.usgs.gov/website/seamless/viewer.php) maintained 
by the USGS.  Simulations were compared for two cases where SSURGO-based and STATSGO-
based SAC-SMA parameters are used.  The model grid cell size is about 4 km2 (2 × 2).  Results 
analyzed here are based on simulations from 1996 to 2004.  Initial gridded model states were 
created by running the model from 1993 to 1996 to avoid the effect of initial conditions on the 
simulations analyzed here. 

 
Figure 2 shows the comparison of modified correlation coefficient Rm of discharge between the 
two cases with Rm values computed relative to the observed discharge time series.  Rm is 
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Figure 3  Comparison of averaged Rm 
based on selected events for 11 basins. 
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Figure 4  Comparison of averaged RMSE 
based on selected events for 11 basins. 

Figure 2  Comparison of Rm of 
outlet flow for whole time 
series of 11 basins.  
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Figure 1  Basin location map. The 
network inside of basin map shows the 
grid connectivity at the 2 km scale. It is 
used for distributed channel routing. 
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calculated by reducing normal correlation coefficient by the ratio of the standard deviations of 
the observed and simulated hydrographs (McCuen and Snyder, 1975).  The calculation of Rm 
was based on the time series from the whole simulation period.  It shows that overall flow 
simulation performance is similar for the two cases as the points fall on both sides of the 
diagonal line.  
 
For flood forecast purposes, the ability to have better flow simulations during heavy rainfall 
events is critical.  Therefore the largest events (15-17) within the simulation period (from 1996 to 
2004) for each basin were selected for event analyses.  Some statistics characterizing the flow 
simulations, peak flow values and peak timing based on selected events are presented in Figures 
3-6.  Note that the basins in these figures are listed from left to right in order of increasing size. 
Figure 3 shows the comparison of Rm for flows of the selected events.  Values of Rm for the 
SSURGO-based case are higher than those for the STATSGO-based case for 9 of 11 basins and 
nearly identical for the remaining two basins, indicating that use of SSURGO-based parameters 
can improve flow simulations for big events.  The RMSE statistics shown in Figure 4 do not 
show improvement in as many basins as the Rm statistics (6 of 11).  
 
While Figures 3 and 4 show statistics for all flows during large events, Figure 5 and 6 show 
comparisons of statistics for peak flow values and timing of these events.  Comparing simulated 
peak flow values against observed flow values, peak flow errors were calculated for each basin 
for the two cases as shown in Figure 5. Peak flow errors associated with the SSURGO-based 
case are smaller than or equal to the STATSGO-based case for 8 of the 11 studied basins.  
Similarly, improvements for 9 of 11 basins can be seen in the comparison of peak flow time error 
shown Figure 6.  These results based on selected large events have shown that using SSURGO-
based a priori parameters can improve flow simulations over using STATSGO-based a priori 
parameters for most statistics and most selected basins. 
 
We plan further examination of the spatial patterns and statistical variability of soil properties 
within the modeled basins.  We hope that these additional analyses will help to explain cases 
when use of SSURGO data did not show improvement.  It will also be insightful to more 
carefully examine the role of scale in these results.  An interesting observation about the RMSE 
statistics is that 4 of the 5 basins where STATSGO-based simulations outperformed SSURGO-
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Figure 6  Peak flow time error 
comparison based on selected events 
for 11 basins 
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based simulations are large basins.  
 
When hydrographs are plotted in log-scale as shown in Figures 7 and 8, an interesting result 
exists for base flow comparison during recession.  Each plot shows one water year of flow time 
series with Figure 7 for a small basin and Figure 8 for a large basin.  For the small basin, when 
compared to observed flow data, base flow based on SSURGO soil data consistently outperforms 
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Figure 7  Hydrograph comparison in log-scale for a small basin, SPRINGT. 
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Figure 8  Hydrograph comparison in log-scale for a large basin, TALO2. 



that based on STATSGO soil data.  Whereas for the large basin, a better performance for 
SSURGO-based case was observed only during the spring and the summer periods.  Further 
investigation will be required to understand the differences between the small basin and large 
basin results and how the improvements relate to each model parameter. 
 

CONCLUSIONS 
 
Characterizing the spatial variability of model parameters is a central challenge in distributed 
hydrologic modeling.  Coarse resolution soil data of STATSGO were initially used to derive 
gridded model parameters for a gridded SAC-SMA model implementation.  While STATSGO 
helps a great deal in running a distributed model with distributed parameters, its coarse 
resolution limits the parameter variation over small areas in which the local hydrological 
response may be important, particularly for flash floods.  We investigated whether or not the 
finer-scale soil data of SSURGO can improve model simulation results over use of STATSGO 
data.  Several statistics were presented based on the analyses of two simulated discharge time 
series; one generated using SSURGO-based parameters and the other using STATSGO-based 
parameters.  It was found that although overall statistics for two cases were similar, there was 
improvement in event flow simulation, peak flow values and peak flow timing for most basin-
statistic combinations when SSURGO-based a priori parameters were used.  When hydrographs 
were plotted in log-scale, it was observed that SSURGO-based case had better base flow 
simulations.  For the small basin the better base flow performance can be seen throughout the 
year while for the large basin the better baseflow performance was seen mainly during the spring 
and the summer.  The reasons for this need to be further studied.  These preliminary results have 
shown the benefit of SSURGO soil data in distributed modeling.  Use of these finer scale data 
can help to derive better a priori parameters.  Improved, higher resolution, a priori parameters 
can provide a better starting point for calibration of distributed models and a more accurate 
characterization of parameters in small, ungauged basins. 
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