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Abstract: Mathematical model development typically proceeds through a model calibration 
phase followed by a model validation phase. Cross-validation techniques, in the form of split-
sample analysis, have long been employed as a tool in evaluating hydrologic simulation models, 
and with the advent of modern computer systems, have been extended in a variety of ways and 
applied to both model calibration and model validation. Over the past thirty years statisticians 
have extensively investigated advanced validation techniques and explored their use in the 
development and evaluation of both linear and non-linear models. The cross-validation standard 
error (CVSE) statistic is presented herein as a statistic particularly applicable to linear regression 
models. The CVSE provides a robust statistic superior to the traditional standard error statistic 
for evaluating the capability of a model to provide a prediction for a sample set not utilized in the 
model calibration. A case study deriving new water supply forecast equations for Libby, 
Montana demonstrates the use of the CVSE in model calibration and selection. 
 

INTRODUCTION 
 
Mathematical Modeling Process Modeling of water resource systems typically involve either 
physical models or mathematical models, with the mathematical models falling into either the 
category of conceptual simulation models (see Singh and Woolhiser 2002 for a recent survey of 
watershed models) or statistical models. Optimization techniques may utilize components of 
either simulation or statistical models, or both. The mathematical modeling process itself may be 
represented by four phases: Conceptualization, formulation, calibration, and validation (McCuen 
2003; McCuen 2005), with a potential feedback-control process of the validation procedure to 
return one to the formulation step to reconsider an alternate model type or form with subsequent 
recalibration of the model parameters (Salas et al 1980). The model conceptualization phase 
considers the general and broad considerations for the purpose of the model, the complexity of 
the model, the available data, along with the experience and biases of the investigator (often not 
recognized!). The model formulation phase considers various alternatives to the model 
composition, model type, and model parameters. Model calibration seeks to determine values for 
the model parameters, while model validation evaluates the performance of the model through 
some type of error analysis. Most water resource models, outside of the statistical models, 
perform inadequate error analysis (Singh and Woolhiser 2002; McCuen 2005). 
 

STATISTICS FOR MODEL SELECTION AND EVALUATION 
 
Cross-validation Validation in hydrologic simulation models has traditionally utilized the split-
sample methodology as a tool to assist in evaluating the model calibration and to judge the “fit” 
of the simulation model (WMO 1975; WMO 1986; McCuen 2003; McCuen 2005). The split-
sample approach divides the data set into two subsets, typically sequential halves, using one data 
set for calibration (or “training”) and the second data set for prediction and error analysis using 
the model calibrated to the first data set. This approach was all that was reasonable when 
considering a complex simulation model and extensive subjective calibration of the model 



parameters. Invariably the model would perform more poorly on the data set that was withheld 
for calibration than with the data set used for calibration. It should be readily apparent that the 
split-sample technique has significant limitations, including (1) that model calibration is 
performed on a significantly reduced subset of the data, and is thus guaranteed to be suboptimal 
over the full data set, i.e. the calibration statistics will always be overly optimistic, and (2) that 
there is little or no flexibility in the choice of the split-sample subsets, especially if the data are 
serially correlated and must be grouped in a time-ordered sequence. Prior to the 1970’s split-
sample validation was similarly employed in fitting and evaluating regression models. 
 
The availability of virtually unlimited computer resources in the 1970’s provided the catalyst for 
extending the concept of split-sample validation and the development of a wide variety of cross-
validation techniques (Stone 1974; Efron 1982). The original split-sample validation 
methodology was constructed under the premise that both the training and validation sets were of 
equal size, N/2, where N is the sample size. There being no inherent restriction on the sizes of 
the training and validation sets, researchers expanded cross-validation to include a training set of 
any size k, with 1 < k <  N/2, with the corresponding validation set then being of size N-k. The 
computation of a validation (goodness-of-fit) statistic from the prediction errors results from 
using the calibrated model to provide predictions on the validation data set. The ultimate 
extension of this approach leads to the jackknife or leave-one-out cross-validation (LOO-CV) 
procedures, both based on systematically removing one observation from the dataset, calibrating 
the model to the remaining N-1 data points, then using this model calibrated on the reduced data 
set to calculate a statistic of interest (Jackknife) or predict the withheld observation (LOO-CV). 
Efron (1982) and Stone (ibid) discuss the details of the differences between Jackknife and LOO-
CV. Other cross-validation techniques explore the option of random sample splits. The bootstrap 
method invented by Efron in 1977, is another resampling approach, in that it draws subsamples 
of a set size from the original data set with replacement, and the statistics of the resulting models 
studied. The jackknife, bootstrap, and various cross-validation strategies have been well 
discussed in the statistical and technical literature (Stone ibid; Efron 1982; Diaconis and Efron 
1983; Wilmott et al 1985). The statistical and technical literature on cross-validation and 
resampling techniques generally, with few exceptions, restricts the discussion to objective 
statistical models, (mostly linear models, but including non-linear and artificial neural network 
models), and not subjectively calibrated hydrologic simulation models. The subsequent 
discussion herein will likewise limit its scope to the statistical model, with a particular focus on 
the linear regression model. 
 
Regression Model Development Cross-validation has been particularly attractive as a tool for 
use in regression analysis, particularly in application to the model development problem of 
selecting the subset of “best” regression variables (Stone 1974; Hocking 1976; Snee 1977; Wu 
1986). Although many criteria functions for subset selection are discussed in the literature (e.g. 
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mallow’s Cp, 
MSEP) , Miller (1984), in a thorough discussion of the regression subset selection problem,  
states that the theory behind their derivations is not valid when model selection and estimation 
are from the same data. Hocking issues a similar warning that “the basic idea behind partitioning 
the data is that the data used for analysis should not be used for assessment”, a sentiment echoed 
by Meko (2005). Miller also reminds us of Hocking’s caution that standard least-squares theory 
is not applicable when the model (variable selection) has not been determined a priori, and 



emphasizes the problem that large biases in the regression coefficients may result when the same 
data have been used for both model selection (choosing the predictor variables) and parameter 
estimation (calibrating the regression coefficients). Stone and Hocking advocate cross-validation 
techniques as the appropriate integration of the parameter estimation phase and model selection 
phase. 
 
Although there are a variety of purposes for which one could be developing a linear regression 
model, is must be recognized that the appropriate criterion for model selection and evaluation 
should be related to the intended use of the regression model. A modeler focused on the 
estimation of the model parameters should consider a different criterion than one focused on 
prediction or extrapolation. In the traditional approach to comparing two regression models, used 
for prediction, and calibrated over the full data set, i.e. without cross-validation, it is nearly 
universal to employ a criterion that penalizes against “over-fitting”, the use of too many 
variables in proportion to the number of available observations. Traditional textbook approaches 
would consider the use of either the adjusted R-squared or the standard error criterion, as they 
both contain a term to adjust for the “degrees of freedom” lost due to fitting additional 
parameters. Intermediate techniques would consider such criterion as the AIC, BIC, and 
Mallow’s Cp, although we have already established that use of these criterion should be limited 
to circumstances that do not involve use of the same data for parameter fitting and model 
selection.  
 
Cross-validation statistics Allen (1971a; 1971b) introduced the Predicted Residual Sum of 
Squares (PRESS) statistic to aid in the variable selection process. PRESS is computed from the 
Leave-One-Out residuals in a fashion analogous to the commonplace sum-of-squares-residuals: 
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where i is the index to the observations in data set of size n, yi is the ith observation of the 
dependent variable, and  is the prediction derived from the regression equation fit to the data 
set with the ith observation removed. Hocking (1976) confirms that PRESS has in intuitive appeal 
if the objective is prediction. 

)(ˆ iy

 
In practice it would be extremely laborious to recalibrate a mathematical model for each training 
set with the ith observation removed (thus the use of split-sample validation for hydrologic 
simulation models). Fortunately, the matrix algebra that provides the least-squares solution to the 
regression model also provides an efficient solution to the computation of the PRESS statistic, 
since 
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where  is the full model prediction for observation i, hi is the leverage for the ith observation, 
and the hi are the diagonal terms of the Hat (projection) matrix XT(XTX)-1X. 

iŷ

 



A close derivative to PRESS is the cross-validation mean-square-error (CV MSE) 
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which is also frequently used as a criterion for evaluating a regression model (Allen 1971a; 
Efron and Tibshirani 1995; Tibshirani and Knight 1999). 
 
Recall that the Standard Error statistic (SE), traditionally used to evaluate regression models, is 
defined as the root-mean-squared-error (RMSE) from the full model prediction errors: 
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where p is the number of independent variables fit in the regression equation, including a y-
intercept term. The analogous cross-validation standard error is computed as 
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The criterion introduced by Stone (1974, page 124), MSEq, is equivalent to the term under the 
radical sign in the CVSE criterion. Although the PRESS statistic by itself is frequently employed 
as the criterion to evaluate the fit of a regression model (Hocking 1976; Stone 1974; Snee 1977; 
Carpio and Hermosilla, 2002; Prairie el at 2005), the PRESS statistic does not utilize a penalty 
term to make a degrees-of-freedom adjustment to prevent over-fitting the regression model with 
too many variables. Plutowski (1996) notes that the “LOO-CV can be too conservative, in the 
sense that it may select a model of excessive size”. 
 
The cross-validation standard error statistic (CVSE) is the ultimate extension of the split-sample 
methodology and with today’s computer resources the CVSE is easily calculated using the 
PRESS statistic (available through many statistical software packages) using (5), or deriving the 
Hat matrix using matrix algebra and using (2). The CVSE is then calculated for each candidate 
regression model and used as a parsimonious criterion to evaluate the goodness-of-fit of each 
model. 
 
Hocking (1976) and Miller (1984), among others, have noted that the variables selection process 
is confounded when there is a high degree of multicollinearity (intercorrelation) in the predictor 
variables. If the predictor variables are orthogonal (i.e. uncorrelated), “the effects of the 
individual variables are clear and the problems of estimation and subset selection are 
elementary” (Hocking ibid). Principal components regression provides a tool that will remove 



the effects of intercorrelation among the predictor variables (Haan 1972; Diaconis and Efron 
1983, Carpio and Hermosilla 2002). 
 

APPLICATION 
 
Water Supply Forecasting Model Combining principal components regression with the cross-
validation standard error criterion for model selection provides a valuable tool for the 
development and evaluation of linear regression models in general and specifically for the 
development of statistical water supply forecasting models (Wortman 1989; Garen 1992; 
Wortman 2005). Individual monthly water supply forecast equations were developed for 
predicting the April-July inflow into Lake Koocanusa, above Libby Dam, Montana. The NRCS 
REG software program developed by Garen at the National Water and Climatic Center, National 
Resources Conservation Service, was used to develop the equations from the observed data 
available on the first of each month during the winter and spring forecast season. For each first-
of-month equation NRCS REG selects the predictor variables from a large pool of variables, 
including a climatic variable (SOI index), monthly precipitation station values, and when 
available, first-of-month snow water equivalent (SWE) station values. In most cases the number 
of variables (up to 80) far exceeded the number of available observations (less than 50). In 
developing a list of “best” models, the NRCS REG procedure first evaluates a base list of all the 
one variable regression models and then examines each of the two-variable principal components 
regression models. Only the significant principal components are retained as predictor variables, 
with the non-significant components being discarded. The pool of all candidate principal 
component regression models are then compared and evaluated based on the CVSE statistic. Up 
to 30 “best” models are retained from this step and the process continues for another round of 
adding variables, continuing until no further principal components regression models can be 
developed that enter into the pool of best models. After REG has developed the pool of 30 best 
models for each forecast date, candidate models are compared and a model for each forecast date 
is subjectively chosen by the modeler to provide the greatest level of month-to-month 
consistency in predictor variables (i.e. find the top models that contain a consistent set of 
stations). 
 
The original forecasting equations for the inflow to Lake Koocanusa were developed in the 
1970s during project construction, and updated in the 1980s to reflect a longer period of record 
and to adjust for precipitation and snow stations whose operation had been discontinued. These 
original equations were developed using standard regression model techniques based on the 
standard error criterion. Figure 1 displays the results of new monthly forecasting equations 
developed using the NRCS REG model, based on principal components regression and the 
CVSE criterion, as previously described. The error statistics for both model sets are based on the 
full set of data through 2004; the standard error statistic is presented for the standard regression 
equations and the CVSE statistic is presented for the new principal component regression 
equations. Use of a climatic variable, the Southern Oscillation Index (SOI), in the new equations 
allowed for the development of forecast equations two months earlier than the original models, 
prior to the availability of winter snow and precipitation observations. A 20% to 30% 
improvement (reduction in prediction errors) is noted for all but the last late-spring forecast date.  
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Figure 1  Libby water supply forecasting model statistics 

 
The use of principal components regression models, based on equations selected using the CVSE 
criterion are seen to offer significant improvement over standard regression procedures. These 
procedures have been widely adopted for use in developing water supply forecasting equations 
by agencies across the Pacific Northwest, including the following agencies: Natural Resources 
Conservation Service; Northwest Division, U.S. Army Corps of Engineers; Northwest River 
Forecast Center, NOAA; Bonneville Power Administration; and British Columbia Hydropower. 
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