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Modifications to a One-Dimensional Model of
Unsteady Flow in the Colorado River
Through the Grand Canyon, Arizona

By Stephen Mark Wiele and Eleanor R. Gritfin

Abstract

Calculations of the downsheam progression and evolution of discha{ge waves released from

Glen Canyon Dam on the Colorado River througb Grand Canyon have been based on hydraulic

geometry derived from measurements made at a maximum discharge of 792 cubic meters per

second. hedictions of downstream hydrographs for larger discharges, such as the confrolled

flood in MarctrApril l996,which reached a maximum release of 1,270 cubic meters per second,

have been based on extapolations of that hydraulic geometry. Data from the confrolled flood

have been used to extend the model to higher discharges using a method that differs from that

used to deterrrine hydraulic geometry in the original model. Scaling of the momentum equation

shows that the wave is well represented by the kinematic-wave equation on the receding limb of
the contolled-flood hydrograph. The wave speed as a function of discharge can be deterrrined

from data obtained at sfreamflow-gaging stations. The wave speed, which is equal w dQy'dA,

where pp is the steady-flow discharge ud A is the cross-sectional area, then can be integfated to

determini the relation betrreen discharge and cross-sectional area of the channel. A known value

of the area corresponding to a given discharge supplies the integration constant. This procedure

has yielded a modified hydraulic geometry for the model of flow in the Colorado River between

Glen Canyon Darn and Lake Mead ttrat has bcen extended to 1,270 cubic meters per second. A
numerical method modified for higher rates of change in discharge and the new hydraulic

geometry have improved the accuracy of the model for discharges greater than about 800 cubic

meters per second

INTRODUCNON

The one-dimensional model of unsteady flow in the Colorado River in the Grand Canyon (fig. l)
presented by Wiele and Smith (1996) has been used to predict hydrographs along the river corridor in

*ppon of research conducted in the canyon (Criffrn and Wiele, 195). The model h3s been used by the

U.3. Ceotogical Survey (USGS) to estimate discharge at stnearnflow-gaglng stations where data are

missing. Belore the controlld floodl in late March and early April 1996, predictions of the hydrographs

at the 
-stneamflow-gaging 

stations were published to help in the peparation and exbcution of field

experiments (Wiele, 1996). The accuracy of these predictions, however, was limited by the absence of

rThe Grurd Crnyon Monioring and Rcscarch C€ntcr rcfers to dris evcnt as a "bcacMrabitat-building flow'' (L.D. Ganett' Chief,

Gmnd Canyon Monitoring and Rccearch Centcr, wrifren conunun" 1997).

Abctraa 1
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data for discharges above the maximum discharge (about 934 m3/s) that can be accommodated by the

turbines at the powerplant at Glen Canyon Dam, which required extrapolation of the hydraulic geometry

to the controlled-flood maximum of 1,270 m3/s.

The hydraulic geometry used in the model has been extended to 1,270 m3/s by applying

kinematic-wave theory to the receding limb of the controlled-flood hydrognph to infer a new hydraulic

geometry. In addition, the model has been modified using a numerical method that calculates more

accurately the rapid changes in discharge associated with the controlled flood. This report documents

these modifications to the model. A more complete description of the hydrology of the area and the

model is presented by Wiele and Smith (1996). This report was prepared by the USGS in cooperation

with the Bureau of Reclamation.
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trlODEL OVERVIEW

Wiele and Smith (1996) described a pne-dimensional model of the propagation of diumal-discharge

waves down the Colorado River between Glen Canyon Dam and Lake Mead. In that PoPOr, the equations

of motion were scaled, and it was demonstrated that the wave evolution and progression could be

represented by the diffusion equation, as derived by Lighthill and Whitham (1955):

ah &.sdQfih Qr azh 
^a7'o* aT*-ffi;,F - v' (l)

where

h = water depth,

t = time,

S* = l<AhlAr)/S,

Q* = steady-flol discharge,

A = cross-sectional area,

x = streamwise coordinate,

S = steady-flotry water-surface slope, and

b = channel-top width.

Equally as important as the governing-flow equation are the physical characteristics of the river

channei. A-characteristic channel itrape was formed by averaging the 199 cross sections measured by

Wilson (19g6). The channel friction was determined at three values of the hydraulic radius corresponding

ts l42,42S,tndggg m3/s and a line was fit through them. The channel friction at 800 m3/s was calculated

from the Wilson cross dtions, and the intermediate channel friction was calculated from a dye study

conducted at a steady 425 mtls that provided reach-averaged flow velocities 1Craf, 1995). The

low-discharge channel friction was calculated from measured wave speeds, and the channel friction was

calculated 
^1 

qzs m3/s. The details of these calculations can be found in Wiele and Smith (1996). The

model proved to be accurate over the modeled reach of the river (fig. l; about 380 km) and over the

"*tor-ily 
high discharge ranges up to an order of magnitude that have characterized typical dam

operation (Wiele and Smith, 1996).

DATA USED IN MODEL MODIFICATIONS

Gharacterlstlcs of the Gontrolled Flood

The confolled flood consisted of a steady low flow of 226 m3/s for 96 hours, an increase to

1,270 m3/s over a l0-hour period where it was held steady for 167 houts, then a gradual decrease to

ZZOrtrcover a 4Ghour prtioa (frg. 2). The falling limb receded slowly to minimize erosion by sapping

of anticipated new sand deposis (fim nanate, Bueau of Reclamation, oral corlmun., 1996). This slow

rate at *ttictr the flow was decreased allows for the simplification of equation I when applied to this part

of the flow and the inferpnce of the hydraulic geometry of up to 1,270 m3/s.

Streamflow-Gaglng Station Data

Four streamflow-gging stations currently operate on the Colorado River betrreen Glen Canyon

Dam and Lake Mead (fig. l).

l. Colorado River at Lees Ferry (09380000), river mile (RM) 0, 25 km below the dam.

llodel Overvlew 3
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Flgurc 2. Hydrograph for the controlled flood released from Glcn Canyon Dam, March-April 1996.

2. Colorado River above the Little Colorado River near Desert View (09383100), RM 61, 124 km

below the dam.

3. Colorado River near Grand Canyon (09402500), RM 88, 165 km below the dam.

4. Colorado River above Diamond Creek near Peach Springs (09404200), RM 225, 386 km below
the dam.

Streamflow-gaglng station, Colorado River below Glen Canyon Dam (09379910) was not operating
at the time of the controlled floo4 and the hydrograph for streamflow-gaging station, Colorado River
above National Canyon near Supai (O94M120, RM 166) was ndt available at the time of this analysis.

Hydrographs for the streamflow-gagrng station, Colorado River above National Canyon near Supai,

however, were available for the research flows released in 1991. One of the research flows was used in
the formulation of the original model, and that research flow as well as two more flows were used to test

the original and modified models. Discharge from Glen Canyon Dam typically is determined from the

magnitude of the power generated by the turbines. This method cannot be used to determine discharge if
the release exceeds powerplant capacity and, as a result, a complete hydrograph of the dam release

during the controlled flood was not available when this analysis was done. The calculations described

below omitted the 2S-kilometer reach of river between the dam and Lees Ferry. Instead daa from the

streamflow-gaging station at Lees Ferry were used as input to the model and to calculate wave speeds.

MODEL IIODIFICATIONS

Governlng Equatlons

The momentum equation is

= 0t (2)

a lodlfrc.tbm lo. OFDlnrnrlonrl llodel ot Unde.dy Flow In the Golondo Flwr through lhe Grurd Cenyon, Arlzom



where

average velocity,
acceleration due to gravitY,

additional water-surface slope with rcspect to the average slope due to the shape of
the wave,
shear velocity, and
hydraulic radius.

Following the procedure of Wiele and Smith (1996), the momentum equation (eq. t) can be rearranged

into a nondimensional form,

u=
g=

0e=
&
Ut=
Rh=

oe2
lAu, uAu,Ax r-r- ltt 

^
vs6i 

*ts6;'3-r rFftls v' (3)

(s)

(6)

that can be scaled to identiff the significant tenns. In Wiele and Smith (1996), the unsteady terr;

117@$l@16r), is srnall *A ,i" t" n"!t""t"a for discharge ggneqt€{ PV {m releases. As in the

i.riio'ritoa"L-the convective acceleration term, ['(g,S)l(aulai, is absorbed into the friction coefficient

Uu."*. it cannot be resolved with the availaLle channel topography and because the energy loss

,"e**"t"a by this rcrm is included in thecrnpirically derived friction coeffrcient. Neglryting these two

terms in the momenttun equation and combining ttre momentum equation with the continuity equation,

=0, (4)

leads to equation I (Lighthill and Whitham' 1955).

On tft r€ceding ilmb of the controlled Roo4 ttre momelrtum equation can be firther simplified by

neglecting the addilional slope due to the wave shape represeirted by @eltuYs. This term can be

"pi.*itrit"a 
by @hlgl@*S), in which c", is the wave sryed. The wave speed and 6hl0t can be

caiculatea wittr itre'hyarautic geometry used in the model, which predicts a change in ft benn'een the high

and low flow of about 4 r J"rt the 46hour duration of the receding limb and a wave spoed of about

3m/s. Substituting these values into (ahlAfl?;g leads to a (eldxlS that is less than a l-percent

correction; therefore, this term can be neglected as well. For ttre receding limb of the conholled flood" the

momentum equation thus can be reduced to: 
I

,* = (gRaS)i

aA +aQ0t 0x

The receding limb of the controlled flood can be represented by combining equation 5 with the

continuity equation (eq. 4) to yield the kinematic-wave equation (Lighthiil and Whitham' 1955):

ah. ah"di*tnf,, = o'

where c, is the kinematic-wave speed, ctQldA. In equation 6, the s@ andevolution of the wave are

fu;;ti"# ody of the channel niarautic-deometry, 
-unlike 

^in 
equation.l -where 

the wave spegd ,and

evolution also are functions of wave shape.-fire time it takes for a given discharge on the receding limb to

rrrt nor gaging statibn to gaging sation, therefore, is simply a result of the average kinematic-wave

sryd (dQ/dA) betrveen gaging strations.

Galculation of HYdraulic Geometry

The hydraulic geometry can be calculated by integratingdQ/dA over the falling-limb of the wave'

which is govemed by equation 6, using one of the known values of the aroa at a given discharge to supply

todd todlffcatlong 5



the integration constant. The known values of areadischarge pairs can be obAined from data in the dye

study at 425 m3ls, the cross sections measured by Wilson (19E6) at 800 m3/s, or from a dye study during

the contolled flood (Konieczki and others, 1997).

ln practice, it generally is easier to integrate a function fitted to dA/dQb which allows for a

separation of variables. Plotting dA/dQkas a function of Qt and fitting three lines to the plot using a
least-squares method yields:

c = (ao* aJn(QrD't i.t Qr<= 623.5 m3/s,

c = Ibo + b4n(Qr) + b2Qn(Ql)2[t if 623.5 m3/ s<Qr(= Jl5 m3/s,

c = (to+ c!n(Qi)'t it7l5 m3/s<Qk,

where

(74)

(7 B)

(7c)

Ao = 1.491,

a1 = -0. l78l 
'bo = 9'1638

Equation 7 and the wave speeds taken from the hydrographs at [,ees Ferry and Diamond Creek are shown
in figure 3. The wave speeds measured from the hydrographs recorded during the controlled flood at Lees
Ferry and Diamond Creek are close to the wave speeds calculated using the previous version of the model
for discharges up to about 700 m3/s (fig. 3). Above 700 m3/s, the exhapolated wave speed from the
previous model exceeds the wave speeds measured from the hydrographs.

Integrating equations 7A, 78, and 7C, using the cross-sectional area from the measuements by
Wilson (1986) made at a knovm discharge to get an integration constant, and matching equations 7A and

78 at their limits to TCyields a new relation betrveen QpandA:
' A= 188.46 t aoQl+ a1Q{tnQyl) if Q*<=623.5 m3/s,

A= 27 .408 + b oQ r + b 1Q dln Q 7\ + b 2Q {@19 S'12-ztng r + z1

if 623.5 nf ls<.gr<= 715 m3/s,

A=26l.ll + coQl+ clQdlnQy-l) if 715 m3ls<91.

The friction coefficient, F, can be determined by rearranging

Qn = PAut (e)

using the characteristic cross section to provide a relation benreen A and R1 (Wiele and Smith, 1996),
solving for a number of values of p and R6 and fitting a line to the rcsult using a least-squares method.
This procedure leads to the rclation (fig. 4):

4 = -2.599,
b2 = 0.1909,

p = -5.252+4.9321nR1,.

co = 0.7774, and

c1 = -{.06821.

(8/)

(88)

(8c)

(10)

Equations 7,8, and l0 are in SI units.
In the previous model, the kinematic-wave spee{ dQ/d,4, was calculated by differcntiating the

relation benn'een Q* Nd A taken from the friction coeffrcient as a function of hydraulic radius and a
relation between hydraulic radius and cross-sectional area talcen from the characteristic cross section.
Following a similar procedure using equations 9 and l0 and the same relation between R; and I used in
the previous model, however, results in a calculated wave speed that misses the inflection at about

6 Xodlfrcetbnr to I OGDlnonConal todel d Unr0ody Flor In the Golondo Rlvel lhrurgh thc Gnnd Crnyon, Arlzom
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Wilson cross sections
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Equation 10

- - 
Equation 2 (Wiele and Smith, 1996)

O Specific data
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HYDRAULIC RADIUS, IN METERS

Flgurc 4. Relation between friction coeflicient, p, and the hydraulic radius. Cross seclions are from Wilson (1986).
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700 mVs (fig. 5), although equation l0 represents well the friction factor as a function of hydraulic radius

and has an I value g€ater than 0.99. This failure to captur€ the inflection at 700 m3/s by differentiating

the modified hydraulic geomety results from very small deviations of the line fit to p from the points

calculated with equation 9. This can be demonstrated by first plotting p = Qy'(Aur) against i1 in which I
is talcen from equation 8, and then plotting p egainst rR1 in which p is taken from equation 10. The result

shows that equation l0 represents p well (frg. 6). Talcing the numerical derivatives of both lines, however,

shows that the derivative of p taken from the lines fit directly to data, Bt = Q/@u.), and shows the

inflection at 700 m3/s; whereas, F taken from equation l0 docs not show the inflection (fig. 7). Equation

l0 smooths out this inflection although this is not readily apparent in figue 6.

In most rivers in which steady discharge is a smooth function of area, fitting a smooth curve to a few

knovm points can repr€sent the hydraulic geometry wcll. In this case, however, such a nnnewer would
fail to captur€ the inflection ttrat is cnrcial to accurarcly modeling wave speed at higher discharges. The

new rclation between p and fi1 appears nearly identical to the original one, even where the original onc is

extrapolated above ?(X) m3/s, but the wave speed as a function of discharge in the modified model is now

determined from equation 7 rather than from the derivative of the disclarge with respect to area

calculated directly from the hydraulic geometry.

Infening wave speed from data from streamflow-gaging stations depends on the accuracy of the

stage-discharge relation for each gagrng station. The reliability of the rating curves in this discharge

range, however, is degraded because the range is above powerplant capacity; therefore, opportunities to

measu€ the river at these discharges generally at€ rare.

The method used to calculate the hydraulic geometry described in this report requires a slow rate of
discharge decrease. But with the very slow rate of decrease on the receding limb of the controlled flooq
even small crronl in the stagedischarge relations can lead to inconsistencies betrreen hydrographs at the

strearnflow-gagng stations (fig. 8) and to irregular or even impossible relations between wave speed and

discharge, especially if the gaging stations are close together (fig. 9). The gagng stations, Colorado River
near Grand Canyon (09402500) and Colorado River above the Little Colorado River near Desert View

-
aataaaaaaaaa

Equation 7

Calculated by diflerentiating modified
hydraulic geometry (equation 9)

5(X, l,(X)O

DISCHARGE, IN CUBIC METERS PER SECOND

1,500

Flgure 5. Wave speeds calculated with equation 7 and by differentlating discharge (O) with rospect to cross-
sectional area (A) in equation 9.
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Qrl(Au.)

Equation 1O

67

HYDRAULIC RADIUS, IN METERS

Flgurc 6. Relation between the hydraulic radius and the friction coetficient, p, calculated using aquation 9
(F=Qxl(eu,l) in which cross-sectional area (A) is taken from equation 8 and ueing equation 10.
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(09383100), are only 43 km apart. On the receding limb of the conrolled flood, the discharge was

lowered at a rate of 2E.3 (m3/s/hr when the discharge was between 976 and 580 m3/s. At 976 m3/s, the
wave speed is 3.25 m/s. As a result of this slow decline in discharge and the short distance between
gaging stations, a combined error of 105 m3/s in the two rating curves at a discharge of 976 m3/s would
place that discharge at the two gagrng stations at the same time.

With suffrcient data" the accuracy of this flow model could be increased if more than one hydraulic
geometry were used to represent the different sections of the channel. Because of the sensitivity of the
method used to modify the model to the rating cuwes and the slow decrease of the receding limb of the
controlled-flood hydrograph, dividing the channel into multiple reaches was found to be impractical, and
a single hydraulic geometry for the entire reach was retained. Using the gaging-station record at Lees
Ferry and above Diamond Creek near Peach Springs, which are 386 k- bpa,tt" yields a smooth consistent
relation benveen wave speed and discharge (fig. 3).

One possible source for error with this method that has not been accounted for is the effect of bank
storage. As the stage drops, water stored in the channel banls during the week-long high flow will be

released to the main channel increasing the discharge above that expected if only wave propagation was
considered"

Numerical Method

In addition to modi$ing the hydraulic geometry by extending it to a higher discharge, the numerical
method used in the solution of equation I has been changed. In Wiele and Smith (1996), a fully implicit
numerical method was used. The curvature of the hydrogaphs in the controlled floo4 however, is sharper
than in previously available flows. This increase in curvatup results in geater sensitivity to the numerical
method because the sharper curvature tends to enhance numerical diffirsion. The numerical difhrsion
inherent in a fully implicit method did not significantly affect the results in the cases tested by Wiele and
Smith (1996). The modified model uses a Crank-Nicholson method (Anderson and others, 1984). The
Crank-Nicholson method time centers the solution by averaging an explicit solution and an implicit
solution at each time step. This procedure reduces excessive numerical diffirsion, allowing for morc
accurate representation of wave propagation under more extreme conditions such as the controlled flood.

COMPARISON OF MODEL RESULTS WITH DATA

The modified hydraulic geometry is close to the hydraulic geometry used in the original model. As a
resulq the differences in model predictions are small for flows with peak discharges that are less than
powerplant capacity. In Wiele and Smith (1996), the accuracy of the model was evaluated by comparing
model predictions to hydrographs recorded during several research flows that consisted of daily flows that
fluctuated betrveen specified ranges and that were prcceded and followed by a steady flow of l42m3ls.
Research flows B and D ranged benn'een 142 and 425 msls and betrreen 85 and 793 m3/s, respectively.
The modified model results are similar to the original model results for flow B (fig. l0) and D (fig. I l).

The falling limb of the hydrograph from the controlled flood is governed by the kinematic-wave
equation, and the rising limb is governed by thc diffirsion-wave equation (eq. l). Thus the rising limb of
the hydrograph serves as a test of the modified model independent of the falling limb even though the
falling limb was used to derive the new hydraulic geometry. The modified model shows improved
accuracy for high flows at all gaging stations (figs. 12, 13, and l4). The average absolute enors in time
for the modified and original model are shown for the rising limb (table l) and for the falling limb
(table 2). In addition to listing the average absolute enon, ables I and 2 show the average absolute enonr
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TaUc 1. Model enor on rising limb of controlled flood at three streamflowaaging stations br the original and modified

models

Orlglnal model llodltled model

Gaglng statlon end number

Average abgolute
elror normallzed

Averago absolute by wave travel
erlor, in houp tlme

Average absolute
eror normalfzod

Averagn absolute by wave travel
error, in hourr tlme

Colorado River above Little
Colonado River (09383 I 00............

Colorado River near Grand
Canyon (09402500)..........o............

Colorado River above Diamond
Creek near Peach Springs
(094M200) ....... o... .. o. .... ... . .... . .. o . . ...

1.01.7

l.l

1.6

0.16

.080

.045

.57

,32

0.10

.040

.0092

Table 2. lrlodel enor on hlling limb of controll€d flood at three streamflowgaging stations br the original and modified
models

Orlglnal model iloditied model

Gaglng statlon and number

Average absolute
Average absolute eror normdEed

e,mof, In houn by tlme of tall

Average absolute
Average absolute etror normallzed

ernor, In hours by tlme of fall

Colorado River above Little
Colorado River (09383100............ 3.6

Colorado River near Grand
Canyon (09402500) .................o.... 1.4

Colorado River above Diamond
Creek neiar Peach Springs
(0%04200)...............o............o....... .76

0.069

.026

3.2

.39

o.M2

0.019

.0057

l.l

.01I

normalized by an appropriate time scale. For the rising limb, the tnavel time of the midpoint of the

wave was used" For the falling limb, the time of fall, taken to be the time over which the discharge

decreased from 1,245 to 270 m3/s, was used This time scale was chosen to account for apparent error
created by the long time of the fall and the sensitivity to the rating curves.

SUlrlllARY

The one-dimensional model of unsteady flow in the Colorado River benreen Gle'n Canyon Dam and

Lake Mead presented by Wiele and Smith (1996) has been modified using daa from the controlled flood
of MarctrApril 1996. Hydraulic geometry and wave s@ were extended from about 800 to 1,270 trtk.
In additioru a new numerical method is used that reduces numerical diftrsion that would othenvise
degnde the accuracy of the model's predictions of hy&ographs with higher rarcs of change in discharge.

The original version of the model was based on daa collected at discharges up to 792 m3/s and required
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Flgure 12. Hydrographs calculated with original and. modified models and hydrographs determined from
stigE records-and th.e stage-discharge relations for the rising (top) and falling_.(bottom) limbs oJ the
conirolled flood at streamflow-gaging station, Colorado River above Little Colorado River near Desert View.

extrapolation of the hydraulic geometry for higher discharges. The accuracy of the modified version is

similar to the original version for discharges up to 792 mtls but is more accurate at higher discharges.
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