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Cladophora glomerata is an ubiquitous filamentous green alga that typically grows attached to 

stones and other solid substrata in both lentic and lotic habitats (Blum 1956, Whitton 1970, Round 

1981, Dodds and Gudder 1992, van den Hoek et al. 1995). Luxuriant growths of this alga are also 

frequently reported in tailwater communities below dams throughout the world (Lowe 1979, 

Skulburg 1984, Blinn and Cole 1991). Until recently, Cladophora glomerata has been especially 

prolific in the Colorado River below Glen Canyon Dam, AZ (GCD) where allochthonous carbon 

(riparian and upland vegetation) was replaced by autochthonous carbon, namely C. glomerata 

(Angradi 1994, Blinn et al. 1998, Blinn et al. 1999, Shannon et al. In Press). It should be noted that 

Wilson et al. (1999) reported large variations in cell morphology for C. glomerata, along 

suspended sediment gradients in the river corridor, that encompass several morphological species of 

Cladophora. 

Cladophora glome rata has served as a keystone species in the food web in the tailwaters 

below GCD (Blinn and Cole 1991, Angradi 1994, Shannon et al. 1994, Blinn et al. 1995a, 

McKinney and Persons 1999, Blinn et al. 1999, also refer to references in Appendix 1). Previous 

studies on the tailwaters below GCD have repeatedly shown that C. glome rata is the preferred 

habitat for the exotic macroinvertebrate assemblage in the regulated river in comparison to other 

available habitats including filamentous algae and macrophytes, as well as, Oscillatoria spp. and 

detritus (Blinn and Cole 1991, Blinn et al. 1992, Angradi 1994, Shannon et al. 1994, Shaver et al. 

1997, Stevens et al. 1997, Ayers and McKinney 1998, Benenati 1998, Shannon et al. 1998, 

Benenati et al. In Press, also refer to references in Appendix 1). The non-mucilaginous, highly 

branched filaments of C. glome rata provide a large surface area for the colonization of epiphytes as 

well as a habitat for invertebrate reproduction and a refugium from predators (Stevenson and 

Stoermer 1982, Leskinen and Hallfors 1990, Dodds and Gudder 1992, Hardwick et al. 1992). 

Other investigators have also noted the importance of C. glomerata as a prime habitat for 

invertebrates as well as a potential food resource in nonregulated streams (Dudley et al. 1986, 

Feminella et al. 1989, Holomuzki 1989, Power 1990, Dodds and Gudder 1992). The dense 
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filamentous tufts of Cladophora glome rata may also mitigate high current velocities and provide a 

more stable habitat for biota (Dodds 1991b, Dodds and Gudder 1992). 

Due to the high occurrence of C. glomerata below dams, particularly below GCD, and its 

potential as a prime habitat for macroinvertebrates, we propose this alga be considered an indicator 

of stream health below GeD, and perhaps in other tailwater communities as well. For this report, 

stream health refers to Meyer's (1997) definition .... "an ecosystem that is sustainable and resilient, 

maintaining its ecological structure and function over time while continuing to meet societal needs 

and expectations". Therefore, this document: 1) reviews the environmental conditions optimum for 

the growth and proliferation of C. glomerata, as well as the other phytobenthic assemblages, 

Oscillatoria spp. and miscellaneous algae, macrophytes and bryophytes (MAMB) in the tailwaters 

of GCD; and 2) synthesizes the work conducted on the phytobenthic community, particularly on C. 

glome rata, in the tailwaters below GeD. Seventy-five references are provided on the phytobenthic 

community in the Colorado River below GeD in Appendix I. In addition, studies on the effects of 

regulated rivers on the phytobenthic community in other regions are reviewed in Baxter (1977), 

Ward and Stanford (1979), Obeng (1981), Lillehammer and Saltveit (1984), Petts (1984), Stanford 

and Ward (1986), Craig and Kemper (1987), and Henriques (1987), Special Issue of Regulated 

Rivers (1997), Seventh International Symposium on Regulated Streams (1999). 

Reproductive Strategies of Cladophora glomerata: 

Unlike marine species of Cladophora, the freshwater taxon of C. glome rata apparently never 

produces functional gametes, but instead commonly reproduces asexually by the production of 

biflagellated zoospores in a variety of aquatic habitats (van den Hoek et al. 1995). Cladophora 

glome rata can also propagate by the fragmentation of filamentous tufts, by the formation of 

akinetes (spores), or by the regeneration of rhizoidal basal holdfasts (Mason 1965, Dodds and 

Gudder 1992, Graham and Wilcox 2000). Zoosporogenesis is typically the fastest mode of habitat 
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recolonization due to the release of numerous zoospores by each cell within the filament, each of 

which potentially produce a new plant (van den Hoek 1995). 

Due to existing conditions in the tailwaters of OCD, zoosporogenesis has never been reported 

in the main channel of the Colorado River, but was observed along the splash zone through Marble 

Canyon during March 1997 under near-stable flows (Benenati and Shannon, personal observation). 

Shaver (1995) monitored C. glomerata below the varial zone (~.5 m deep) at monthly intervals in 

the Colorado River at Lees Ferry for one year and reported neither zoospore nor akinete formation. 

Photoperiod is considered to be the primary factor in the formation of zoosporangia and the 

process is favored by short-day conditions (8 h lightl16 h dark; Hoffman and Graham 1984). The 

fluctuating water levels, and perhaps the high suspended sediment loads down river, likely reduce 

the opportunity for C. glome rata to become established along a stable waterline throughout the 

river corridor, even under optimum photoperiods. Constant flows would likely provide better 

conditions for zoosporogenesis in the tailwaters below OCD and a more rapid proliferation of C. 

glomerata after a disturbance from regulated flows and/or high suspended sediment loads. The 

proposed study by the Olen Canyon Monitoring and Research Center (GCMRC) will provide more 

insight on this hypothesis (M. Yard, pers. comm.). 

Akinetes are resting spores developed from vegetative cells and are characterized by increased 

levels of reserve storage products, increased dry matter content, and reduced metabolic activity 

(O'Neal and Lembi 1983). Prolonged illumination with red light has been found to increase the 

rate of akinete formation (Pantastico and Suayan 1973). 

Due to the restricted conditions for zoosporogenesis and the infrequent observance of 

zoospore formation, it is hypothesized that the common method of proliferation by C. glomerata in 

the tailwaters of GCD is either by drifting fragments of C. glomerata becoming entrapped by 

stationary substrata and/or recolonization by basal holdfast cells. Dodds and Oudder (1992) have 

also noted that Cladophora tufts become detached from their original substrate, drift downriver 

until they become entangled around a submerged stable substrate, and continue to be 
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photosynthetic. However, this process only allows for the recolonization of downstream habitats. 

The slow recolonization by C. glomerata after a disturbance in the tailwaters below GCD (Angradi 

and Kubly 1993, Blinn et al. 1995b, Shaver et al. 1997, Benenati et al. 1998) supports the 

hypothesis of limited zoospore production since the latter strategy is typically a faster mode of 

recolonization (van den Hoek et al. 1995). The periodic high suspended sediment loads further 

reduce colonization rates by C. glomerata throughout the river corridor. Additional studies on the 

reproductive strategies of C. glomerata in the tailwaters of GCD need to be undertaken, particularly 

in light of the importance of this alga in the food web, to better manage the regulated Colorado 

River tailwater system. 

Light Requirements of Cladophora glomerata: 

Cladophora glome rata typically displays an annual bimodal curve in biomass throughout the year 

with high mass in the spring, low mass in mid-summer, and high biomass again in the fall (Whitton 

1970, Madsen and Adams 1988). Initial growth in the spring may depend on the overwintering of 

basal holdfasts that are stimulated by increasing day length (Bellis and McLarty 1967, Blum 1982), 

which appears to be the case for C. glomerata below GCD. 

The annual bimodal pattern of growth for C. glomerata may, in part, be attributed to light 

requirements of the alga. Graham et al. (1982) estimated from laboratory experiments that 

optimum rates of photosynthesis occurred between 300 and 600 ILmol quanta· m-2 • s-1. They 

further reported that light saturation for the pigment system of C. glome rata occurred between 345 

and 1125 ILmol quanta • m-2 • s-1. Therefore, the reduced growth of C. glome rata in the winter and 

summer may be due, in part, to reduced light energy in the winter and light saturation in the 

summer, respectively. Yard et al. (1995) and Yard and Blinn (1998) have further documented the 

importance of light energy in the seasonal dynamics of C. glomerata below GCD. 

High sediment loads delivered to the mainstem by major tributaries such as the Paria and Little 

Colorado rivers further reduce light penetration in the water column and greatly reduce the biomass 
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of C. glomerata (Yard et aI. 1995, Shaver et aI. 1997, Yard and Blinn 1998" Wilson et aI. 1999). 

This phenomenon is especially criticaI downriver within incised canyons where the "life band" of 

C. glome rata is restricted to only a few centimeters, due to restricted light penetration and the sharp 

slope of the shoreline (Usher and Blinn 1990, Shannon et aI. 1994, Blinn et aI. 1999, Wilson et aI. 

1999). Therefore, fluctuations in water level due to operations of GCD have major ramifications on 

the presence and growth of C. glomerata downriver under turbid water conditions. Cladophora 

glome rata is common in low mass in the ''unregulated'' section of the Colorado River above Lake 

Powell where suspended sediment loads are commonly high (Haden 1997, Haden et aI. 1999). 

Wilson et aI. (1999) reported on the ability of C. glomerata to modify its cell morphology to 

accommodate the abrasive force of suspended particles down stream in the Colorado River corridor. 

Temperature Requirements of Cladophora glomerata: 

Cladophora glomerata is found at a variety of temperatures throughout the world (Whitton 1970). 

Maximum growth of C. glome rata has been reported to range at temperatures from 13-17°C 

(Graham et aI. 1982), with an upper limit of 24 °C (Wong et aI. 1978). SeveraI authors have used 

temperature to described seasonaI patterns of C. glomerata (Whitton 1970, Auer et aI. 1983, Muller 

1983, Robinson and Hawkes 1986), however, the role of temperature in the seasonaI dynamics of 

this aIga is not clear. For example, Wong et aI. (1978) explained the summer die-off of 

Cladophora in many rivers by the inability of the aIga to maintain dominance above 23.5°C. 

However, Brock and Hoffmann (1974) reported photosynthesis by Cladophora at temperatures up 

to 35°C, with optimum rates at 27°C. In contrast, Graham et aI. (1982) showed that net 

photosynthesis decreased at 25°C which coincided with the summer die-off in Lake Huron. 

The luxuriant growth of C. glomerata in the tailwaters of GCD at temperatures of 11°C 

suggests that severaI races of this taxon exist, perhaps a ''tailwater race" that has adjusted to the 

cool hypolimnetic water released from the Lake Powell reservoir. Brock et aI. (1999) reported 

gross primary production (GPP) rates for the phytobenthic community at Lees Ferry during 1991 
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that were high (33.9 g 02 m-2 d-1) compared to other North American streams. These high 

photosynthetic rates suggest the C. glome rata "race" in the tailwaters of GCD is capable of high 

photosynthetic rates at relatively low temperatures (e.g. II-13°C). Other investigators have 

also reported relatively high photosynthetic rates by the C. glomerata assemblage in the tailwaters 

of GCD (Angradi and Kubly 1993, Blinn et al. 1994, Blinn et al. 1999). 

Due to the varied photosynthetic responses by C. glome rata under a variety of temperatures, it 

appears that temperature alone does not determine seasonal biomass of this alga. It is likely that 

multiple factors including light, nutrients, biotic interactions, and variable flows all contribute to the 

seasonal dynamics of C. glome rata. 

Nutrient Requirements of Cladophora glome rata: 

Cladophora glomerata is associated with moderate to high nutrient concentrations, particularly 

soluble reactive phosphorus (SRP), and therefore favors such environments (Herbst 1969, Whitton 

1970, Pitcairn and Hawkes 1973, Lowe 1979, Lohman and Priscu 1992, Wharfe et al. 1984, Dodd 

and Gudder 1991), including tailwaters that receive hypolimnetic waters from reservoirs (Lowe 

1979, Dufford et aL 1987, Blinn and Cole 1992, Blinn et al. 1998, Benenati et aL In Press). In fact, 

Cladophora may become a nuisance in some streams with high nutrient loads (Whitton 1970, 

Homer and Welch 1981, Lembi, et aL 1988, Dodds 1991 a and b). Optimum growth for C. 

glome rata has been reported at 1.5 mgIL TP with no significant increase in growth above that 

concentration (Pitcairn and Hawkes 1973). Pitcairn and Hawkes (1973) also reported that 

concentrations :50.5 mgIL TP were limiting and Wong and Clark (1976) observed a direct 

relationship between ambient TP concentration and the TP content of Cladophora tissue. 

Dodds (1991a) reported a positive correlation between C. glome rata and Nl4+ concentrations 

and Benenati et aL (In Press) attributed reductions in C. glomerata biomass in the tailwaters below 

GCD to reductions in N03-N delivered from the Lake Powell reservoir. Benenati et aL (In Press) 
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proposed that a strong linkage exists between the seasonal dynamics of the Lake Powell reservoir 

and the physicochemical conditions of the downstream tail waters. This in tum has an influence on 

the phytobenthic community throughout the river corridor. 

Gerloff and Fitzgerald (1976) reported the minimum cell concentration for Nand P that 

permits maximum yield (critical cell concentration) for C. glome rata is 1.1 % and 0.06%, 

respectively. Any tissue with critical concentrations below these levels is presumably nutrient 

limited. In contrast, other investigators have found no significant correlation between nitrogen and 

the growth of Cladophora (Wong and Clark 1976, Mantai et al. 1982, Manuel-Faler et al. 1984). 

The anomaly of high growth rates and biomass for C. glomerata and limited ambient 

phosphorus concentrations in the upper tailwaters of the Colorado River is likely the result of the 

fast delivery rates of upstream soluble nutrients to C. glomerata. Concentrations of total 

phosphorus (TP) in the upper tailwaters are typically ::;:;0.01 mg/L (Benenati et al. In Press). 

However, the high discharges (~285 m3 s-1) from GCD deliver large amounts of upstream 

phosphorus across cell membranes over relatively short periods of time (e.g. ~0.285 mgIL s-1). 

Furthermore, increased velocities have been shown to increase nutrient uptake rates across cell 

membranes in attached algae (Whitford and Schumacher 1961, 1964). Stanford and Prescott 

(1988) described a new species of Cladophora that was apparently able to survive low ambient 

concentrations of phosphorus. 

Desiccation of Cladophora glomerata: 

The variable discharges from GCD have major implications on the growth and development of C. 

glomerata and the overall trophic health of the Colorado River ecosystem. Several investigators 

have shown in laboratory and field experiments that even short-term exposures to the atmosphere 

drastically reduce the biomass of C. glome rata below GCD (Usher and Blinn 1991, Angradi and 

Kubly 1993, Blinn et al. 1995b, Shaver et al. 1997, Benenati et al. 1997, also refer to references in 

Appendix I). In fact, Blinn et al. (1995b) showed a 50% reduction in C. glomerata mass after only 
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2 d of repeated 12-h summer exposures; 5 d of similar exposures resulted in >70% reduction in C. 

glomerata. Also, one 12-h summer exposure resulted in ~85% loss in macroinvertebrate mass. 

Bleaching of surface filaments within the C. glome rata tuft is normally visible after a I-d 

summer exposure. Angradi and Kubly (1993) reported that only 57% of the initial chlorophyll a 

remained after a lO-h summer exposure. Even a 3-h exposure to subzero winter air temperatures at 

night resulted in a ~50% loss in chlorophyll a and C. glomerata mass which resulted in a 90% loss 

of invertebrate mass associated with the phytobenthic assemblage (Blinn et al. 1995b). The 

bleached filaments eventually detach from the algal tuft and drift downstream where they are 

pulverized by turbulent rapids (Haury 1981, Shannon et al. 1994). 

Although C. glome rata biomass is greatly reduced in fluctuating tailwater systems, the alga 

has several attributes that make it a relatively successful colonizer in these habitats. For example, 

the alga has a streamlined thallus with thick cell walls and a durable basal holdfast, all designed to 

help withstand high flows, and highly branched collapsing filaments that trap water and reduce 

desiccation of interior filaments during exposure (Blinn et al. 1999). Usher and Blinn (1990) 

reported that C. glomerata tufts retain water within the inner thallus after emersion for at least 12 h 

and protect interior filaments from desiccation and ultraviolet light. Furthermore, the epiphytic 

diatom and cyanobacteria assemblages on C. glomerata may provide some protection from 

desiccation by retaining water within their mucilages during emersion (Usher and Blinn 1990). 

Dodds (1991a) also reported that epiphytes may reduce photoinhibition during emersion. These 

interactions between epiphytes and C. glomerata host are likely beneficial during exposure periods. 

As previously mentioned, recolonization by C. glomerata is slow due to the mode of 

regeneration in the regulated Colorado River. Blinn et al. (1995b) reported that up to 4 mo may be 

, I required for C. glome rata to recover in clear water reaches and perhaps as much as 10 mo in turbid 

water reaches. Other studies in the tailwaters of GCD have reported similar recovery times 

(Benenati et al. 1998, Shaver et al. 1997). Benenati et al. (1998) found only 30% recovery of C. 

glome rata after 18 weeks of fluctuating flows. It has generally been found that steady flows 
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enhance the growth and development of C. glomerata below GCD (Blinn et al. 1999, Shannon et 

al. In Press). 

Shaver et al. (1997) reported that C. glome rata grows poorly in habitats with variable water 

levels and high turbidity. Shaver et al. (1997) also reported that varial zone conditions 

demonstrated a stronger influence on community structure than habitats with high suspended 

sediments. Newcombe and MacDonald (1991) review the detrimental aspects of suspended 

sediments to phytobenthic communities. 

From a trophic ecology standpoint, high daily discharges from GCD drastically influence 

ecosystem energy within a given tailwater reach. At the extreme end of variation, Blinn et al., 

(1995b) estimated that daily fluctuations in discharge between 793 (28,000 cfs) and 142 m3 s-l 

(5,000 cfs) reduce overall energy of C. glome rata, associated epiphyton, and the macroinvertebrate 

assemblage in the Lees Ferry reach by nearly two-fold. Daily fluctuations in discharge from 793 to 

425 (15,000 cfs) and 227 m3 s-l (8000 cfs) reduce energy by approximately 10% and 30%, 

respectively (Blinn et al. 1995b). This reduction in ecosystem energy is amplified in downriver 

reaches due to restricted light penetration from high suspended sediments and the sharp slope of 

shorelines (refer to references in Appendix I). 

Influence of Flow Variability on Cladophora glomerata: 

Various studies have shown that high discharges remove periphyton, including C. glome rata, from 

natural substrata (Statzner and Higler 1986, Biggs and Close 1989, Oberlin 1995, Blinn et al. 1999, 

McKinney et at. 1999, Shannon et al. In Press). Peterson (1996) provides an excellent summary 

on the response of various alga taxa and assemblages to assorted discharge regimes. In some 

instances, high discharges may selectively benefit certain biota by increasing nutrient exchange 

within dense periphyton mats and filamentous algal tufts as well as reduce interspecific competition 

and predation from larger biota that are removed by hydraulic scour (Statzner and Higler 1986, 

Duncan and Blinn 1989, Dodds 1991b, Peterson 1996). Different algal growth forms may show 
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differential resistance to high discharges (Power and Stewart 1987, Steinman and McIntire 1990). 

For example, Power and Stewart (1987) found the filamentous chlorophyte Rhizoclonium, a close 

relative of Cladophora with a strong basal holdfast system, was able to tolerate high discharges 

better than the filamentous alga, Spirogyra, that has a weaker lateral holdfast system. Homer and 

Welch (1981) reported that filamentous algal forms appear to be susceptible to dislodgement at 

current velocities exceeding 50 cm s-l. The actual threshold discharge for the removal of C. 

glome rata from substrata has not been determined. However, the 1274 m3 s-1 experimental flood 

removed over 90% of the phytobenthos and ~50% of the benthic invertebrates from the Lees Ferry 

reach below GCD (Shannon et al. 1996, Blinn et al. 1999, Shannon et al. In Press). 

Cladophora scoured from upstream substrates drifts downstream and is typically pulverized 

by the hydraulic force of rapids (Shannon et al. 1996). The invertebrate composition and density 

within the drifting packets of C. glomerata are considerably lower than that for attached C. 

glomerata. 

Biotic Interactions (Grazing): 

To date, there is no evidence that the exotic invertebrate assemblage in the tailwaters of GCD graze 

on C. glomerata to any extent (Blinn and Cole, 1991, Pinney 1991). Pinney (1991) examined the 

gut contents of Gammarus lacustris and chironomid larvae at the Lees Ferry reach and found only 

incidental amounts of C. glome rata in the diet. Instead, it appears that the microscopic diatom 

assemblage attached to C. glome rata is the primary constituent of the diet for most invertebrates in 

the tailwaters of GCD (Czarnecki and Blinn 1978, Blinn et al. 1989, Blinn and Cole 1991, Shannon 

et al. 1994, Blinn et al. 1998). 

Studies in other freshwater systems have also reported that C. glome rata is a poor, 

nonpreferred food source for grazers (Gregory 1983, Patrick et al. 1983, Bronmark et al. 1991). In 

fact, there are reports that C. glome rata contain toxic fatty acids that may explain why the alga is 

not consumed by many freshwater invertebrate grazers (LaLonde et al. 1979). 
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Although C. glomerata does not appear to be a food resource for invertebrates in most 

freshwater habitats, there have been several reports of caddisflies (Feminella and Resh 1991), 

gastropods (Bronmark et al. 1991), aquatic Lepidoptera (Bergey 1995), and assorted freshwater 

invertebrates (Koslucher and Minshall 1973) that graze on Cladophora in some aquatic 

ecosystems. Cladophora glome rata appears to serve more as a substrate for the epiphytic 

microalgae assemblage rather than a direct food source in the tailwaters of GCD. 

There have been several reports of trout foraging on C. glomerata in the Lees Ferry reach 

(Leibfried 1988, McKinney and Persons 1999, McKinney et al. 1999). Leibfried (1988) reported 

that C. glomerata was consumed by trout but passed through the digestive tract undamaged and 

free of diatom epiphytes. In other words, C. glomerata entered the digestive tract a brownish color, 

due to the golden brown epiphytic diatoms, and exited the digestive tract green and free of diatoms. 

Ecological Conditions for Oscillatoria spp. 

Species of the cyanobacterian, Oscillatoria, are common phytobenthic components under specific 

ecological conditions in the tailwaters below GCD. It's possible the cyanobacterian taxa change 

along the river corridor to adjust to changing conditions in suspended sediment, light climate, 

temperature, dissolved nutrients, and discharge, although this has not been documented. 

Unfortunately, little attention has been given to the Oscillatoria assemblage due to its perceived 

limited role in the food web in the tailwaters of GCD. Angradi (1994) suggested the Oscillatoria 

assemblages in the tailwaters below GCD was not a nitrogen-fixer, based on a multiple isotope 

study of the food web. 

The Oscillatoria and C. glomerata assemblages in the tailwaters below GCD show distinctly 

different habitat preferences. In an in situ study with reciprocal cobble transplants in clear and 

turbid habitats in the Lees Ferry reach, C. glome rata preferred clear water with low suspended 

sediments and flows with minimal variation in discharge, whereas Oscillatoria dominated in 

habitats with high suspended sediments and highly variable flows (Shaver et al. 1997, Stevens et al. 
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1997, Benenati et al. 1998). Shaver et al. (1997) reported a >80% reduction in C. glome rata ash­

free dry mass on cobbles translocated from clear to turbid water habitats with variable hydrographs, 

whereas Oscillatoria showed a substantial increase in the latter habitat. Benenati et al. (1998) also 

found that C. glome rata was the dominant phytobenthic species on cobbles below the baseflow in 

the tailwaters of GCD and Oscillatoria spp. was dominant on cobbles in the varial zone. 

Oscillatoria spp., unlike C. glomerata, can tolerate extended periods of desiccation and the 

abrasive and light-limited environment of high suspended sediments (Fogg et al. 1973, Carr and 

Whitton 1973, Round 1981. This is due, in part, to the protective mucilaginous sheath that 

surrounds cyanobacterian cells and trichomes. The encompassing mucilage helps retain moisture 

to reduce damage from atmospheric exposure during variable flows and protects the sensitive 

pigment systems in cyanobacterian cells from ultraviolet light during periods of emersion in the 

absence of a protective water filter (Fogg et al. 1973, Carr and Whitton 1973) . 

The mucilaginous matrix that surrounds the cyanobacterian cell can also assist in cell motility 

(van Den Hoek et al. 1995, Graham and Wilcox 2000). During emersion in the tailwaters of GCD, 

trichomes migrate into the surface sediments to retain moisture and reduce damage from ultraviolet 

light. This is evidenced by the appearance of a blue-green film of cyanobacterian filaments on the 

surface sediments during submergence but disappear into the moist surface sediments during 

exposures (Joseph Shannon, personal observations). Similar movements have been reported by 

Castenholz (1973) in hot spring environments. Other investigators have found Oscillatoria mats to 

survive desiccation and recover rapidly upon hydration (Round 1981, Hawes 1993, Vincent and 

Howard-Williams 1996). 

Variable flows reduce potential energy flow in the tailwaters of GCD by displacing C. 

glomerata and producing habitat more suitable for Oscillatoria. Commonly the ash-free dry mass 

of the epiphytic assemblage associated with C. glomerata is considerably greater than that 

associated with the Oscillatoria assemblage. The loosely interwoven filaments of C. glomerata 

provide substantially more surface area for the attachment of epiphytes than the more compact, mat-
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like matrix of Oscillatoria. The difference in diatom epiphytes between the two phytobenthic 

assemblages is reflected by the invertebrate assemblage as well, with C. glome rata supporting 

considerably more invertebrates than Oscillatoria. Shaver et al (1997) reported the invertebrate 

assemblage in the C. glomerata assemblage comprised nearly a two-fold higher energy level than 

the invertebrate assemblage in Oscillatoria. 

Ecological Conditions for Miscellaneous Algae, Macrophytes and Bryophytes: 

Miscellaneous algae, macrophytes, and bryophytes (MAMB) have had a strong presence in the 

Colorado River below GCD since late summer of 1995. In the spring of 1995, high snowmelt 

delivered from tributaries into Lake Powell filled the reservoir to capacity for only the second time 

in its 33-year existence. This resulted in a freshened or diluted reservoir and subsequent high flow 

releases from GCD to facilitate lake drawdown. Within three months, >50% of the once dominant 

non-mucilaginous chlorophyte, C. glome rata (L.), was replaced with a mixed, mucilaginous 

phytobenthic assemblage consisting of miscellaneous algae, macrophytes and bryophytes (MAMB) 

in the tailwaters. Cladophora glome rata was documented as the dominant alga below GCD within 

six years of the 1963 closure (Czarnecki et al. 1976, Mullan et al. 1976, Carothers and Minckley 

1981, Blinn et al. 1989) and remained dominant until August 1995 (Blinn and Cole 1991, Blinn et 

al. 1995, Benenati et al. 1998). 

Cladophora glomerata is considered important to the Colorado River foodweb below GCD 

because of its role as a host, refugium, and provider of food to upper trophic levels throughout the 

river corridor (Blinn and Cole 1991, Shannon et al. 1994, Blinn et al. 1998). Other algal 

constituents provide lower epiphytic diatom biomass and inadequate refugia for invertebrates 

(Shaver et al. 1997, Benenati et al. 1998). The relative phytobenthic composition by biomass prior 

to June 1995 was: Cladophora glomerata = 91.5%, MAMB = 3.5%, and cyanobacteria = 5.0% 

compared to 49.6, 47.9, and 2.5%, respectively, after the initiation of high discharges (Benenati et al. 
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In Press). Cladophora glome rata and MAMB had an inverse relationship that fluctuated 

seasonally. Cladophora was found to be positively associated with increased nutrient 

concentrations and lower discharge during summer-fall, while MAMB was positively correlated 

with decreased nutrients and higher discharge during winter-spring. Cladophora was positively 

associated with invertebrate biomass and also had greater epiphyton biomass and density than 

MAMB. This major compositional change in phytobenthos following changes in reservoir water 

quality and releases has been widespread below GCD since 1995 and illustrates the need for greater 

understanding of lentic-lotic interactions. 
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Enclosed please find two copies ,of our preliminary report titled, "Environmental 
Conditions Associated with Cladophora glomerata, Oscillatoria spp., and Miscellaneous 
Algae, Macrophytes, and Bryophytes, MAMB" for the first deliverable on the extended 
GCMRC Contract Agreement No. 1425-98FC-22590. This report synthesizes the habitat 
requirements for various constituents of the phytobenthic community below Glen Canyon 
Dam. It also provides an updated literature list of all research conducted on the 
phytobenthic community in the tailwaters of Glen Canyon Dam. 

Our next report will include the use of Cladophora as an indicator of "stream health" 
below Glen Canyon Dam 
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