
MONITORING THE AQUATIC FOOD BASE
IN THE COTORADO RrVE& ARTZONA

DURING FISCAL YEAR 1999

Joseph P. Shannon, I)ean W. Blinn, Kevin P. Wilson,
Kim B. Pomeroy, G. Allen Haden, and Emma P. Benenati

ANNUAL PROGRESS REPORT

30 December 1999

IN COOPERATION WITH
Bureau of Reclamation

Grand Canyon Monitoring and Research Center
Grand Canyon Science Center

Northern Arizona University
Department of Biological Sciences
PO Box 5640
Flagstaff, AZ 86011

T :;si"fiff
L {",fl '/ _ril_- n_*
QCr fr,^*^or(

_ GCltdHC Library
DO NOIHEfIdOIT





TABLE OF CONTENTS

Abstract.
Acknowledgements........... ............... z
Introduction......... 3

objective L: Monitor the effects of modified low fluctuating
flows from Glen Canyon Dam (GCD) on the
benthic community in the Colorado River between
Glen Canyon Dam and Diamond Creek.

Methods
Results

Objective 2z Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the
Colorado River btween GCD and Dialnond Creek.

Methods
Results

Objective 3. Assess the benthos and drift of major tributaries in
Grand Cattyon National Park.

Methods
Results

Objective 4. Construction of an aquatic/riparian food web
using stable isotope analysis.

Methods
Results

Establishing Reference Data

Managment Considerations

Literature Cited

5
17

9
20

9
20

11

20

L2

28

32



APPENDICES
Abiotic Parameters
Discharge at Lees Ferry......
Water Quality

Glen Canyon
Ipes Ferry
Two-Mile V/ash Rkm
Gauge Above LCRRkm
Tanner Canyon Rkm
L27 Mile Rapid Rkm
205 Mile Rapid Rkm

Biotic Estimates
Cobble Habitats

Ires Ferry cobble Rkm
Two-Mile Wash Rkm
LCR Island cobbleRkm
Tanner cobble Rkm
I27 Mile Rapid Rkm
205 Mile Rapid Rkm

Pool Habitats
Lees Ferry Rkm
Two-Mile Wash Rkm
60 Mile Rapid Rkm
Tanner Canyon Rkm
I27 Mile Pool Rkm
Spring Canyon Rkm

Drift CPOM

Rkm
Rkm 0.0

-23.2

A1

A2
410
A18
426
434
A.42
A50

109.9
202.9
329.9

3.1

0.9
3.1

0.0
3.1

98.4

gg.6

A58
Fi70
482
/i94
A106
A118

A130
A142
A15/.
A166
A178
4190

109.6
202.9
329.9

95.1
108.9
203.2
326.4

Glen Canyon Rkm -23.2. A2O2
Lees Ferry Rkm 0.0........ AZI}
Two-Mile Wash Rkm 2.9......... AZZT
Gauge Above LCRRkm 98.4....... A232
Tanner cobble Rkm 109.6...... A24Z
L27 Mile Rapid Rkm 202.9... AZST
205 MIle Rapid Rkm 328.8..... A262



Drift FPOM
Glen Canyon Rkm -23.2...... AZTZ
Ipes F"tt)' Rkm 0.0.........
Two-Mile Wash Rkm 2.9......... A288
Gauge Above LCRRkm 98.4....... A296
Tanner cobble Rkm 109.6...... A304
127 Mile Rapid Rkm 202.9..... A3tz
205 Mile Rapid Rkm 328.8..... A3ZO

Benthic Summaries

June 1998

A32r
4322
4323

October 1997
March 1998



ABSTRACT

Discharge from Glen Canyon Dam (GCD) strongly influences the lower hophic levels
(phytobenthos and macroinvertebrates) of the aquatic ecosystem in Grand Canyon
National Park. The aquatic food base in the Colorado River is affected by the
duration and timing of low releases from GCD, as well as the range of daily
fluctuations. The overall objectives of this project are to seasonally monitor the effect
of discharge characteristics below GCD, under modified low fluctuating flow criteria,
on the distribution, standing mass and composition of primary and secondary
producers in the benthos and drift, and to examine the linkages between lower and
higher trophic levels. This inforrration is critical because the lower aquatic trophic
levels provide essential resources to both aquatic and terrestrial components of the
fluvial ecosystem in Grand Canyon National Park.

Water quality monitoring of the Colorado River below GCD is within the typical
seasonal ranges for temperature, conductivity, pH and dissolved oxygen. We have
insufficient baseline data to detennine if nutrient concentrations are within Upical
ftmges. Secchi depths and light intensity data indicated seasonally turbid water fypical
of a wetter than normal year (1999) as evidenced by the Little Colorado and Paria
River spates this past summer and winter.

Dam discharges were highly variable between months with the first use of the E.I. S.
selected flows starting in September t97. These included higher than normal
monthly discharges including daily flow fluctuations over 560 m3.s-1. These flows
have returned instability in the benthic communiry as indicated by high variability of
Cladophora, detritus and Oscillatoria. Macroinvertebrate mass estimates were greater
than the L99L reference data in March at RKM 98.6, just above the Little Colorado
River confluence and in June RKM 3.1, just below the Paria River. All other
macroinvertebrate estimates are equal to or below l99l data at those sites. This is
probably a combination of high energy discharges and a wet monsoon season creating
turbid conditions.

Taxa richness urmong macroinvertebrates increased during Interim Flows (L992-I997)
but now we are seeing a return to low diversity. Drift in L997 miscellaneous
macroinvertebrates (Trichoptera, Ephemeroptera, terrestrial insects, etc.) contributed
more to macroinvertebrate portion of CPOM since 1995 (Shannon et aI 1998).
However, this trend is changing to aquatic diptera larvae, pharate pupae and adults
comprising the majority of the CPOM macroinvertebrate drift; October 1998 33Vo;
ffiVo March L99;777o June 1999. These pafferns are very similar to those of l99L;
low benthic biomass and taxa richness with high variability.
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INTRODUCTION

Discharge from Glen Canyon Dam (GCD) strongly influences the lower fiophic levels
of the aquatic ecosystem in Grand Canyon National Park (Blinn et al. 19y2, 19y3,
L994,1995a,b,1998, Shannon et al. 19g6p,). The aquatic food base in the Colorado
River is affected by the duration and timing of low releases from GCD, as well as the
ftmge of daily fluctuations. The objectives of this project is to seasonally monitor the
effects of discharge characteristics below GCD, under the Bureau of Reclamation's
modified low fluctuating flow criteria, on the composition, distribution and standing
mass of primary and secondary producers in the benthos and drift. This information
is valuable because the lower aquatic trophic levels provide essential resources for
both aquatic and terrestrial components of the fluvial ecosystem.

Grand Canyon National Park's Colorado River Management Plan (tPS 1%9) states
that its resource management goals are "to preserve the natural resources and
environmental processes of the Colorado River conidor and the associated riparian
and river environments.... (and) to protect and preserve the river corridor
environment (NPS 1989:9). Among its objectives are:
1) "establish.....a long-term monitoring program to assess changes in the status of
natural....resources. This program will require definition of present resource status
(t{PS 1989:10)"; and2) "advocate and support operational objectives for the Glen
Canyon Darn (GCD) which are most compatible with protection of the intrinsic
resources of the Colorado River within Grand Canyon National Park (NPS 1!89:10).
The aquatic food base is an integral part of the natural resources in Grand Canyon
National Park.

The Secretary of the Interior authorized implementation of modified low flucfuating
flow criteria from Glen Canyon Dam (GCD) in August l996 based on the
recommendations set forth by the Environmental Impact Statement (1990- lWz).
These flows are designed to mitigate impacts of danr-operations on downstream
riverine resources. The flows consist of low-, medium-, and high-volume months,
with low flows during the spring and late fall, moderate flows in May and September,
and high flows during mid-summer and mid-winter. These flows have a maximum
discharge of 566 m3 s-1, a reduced range of daily fluctuation, and reduced up- and
down-ramping rates.

The Environmental Impact Statement (US8R,1995) on the operation of GCD
identified the aquatic food base as an "indicator resource" and important habitat for
wildlife. Wildlife linked directly to the aquatic food base include native and non-
native fish, insectivorous birds and bats, reptiles and waterfowl. Indirect links to the
aquatic fgod base include peregrine falcons feeding on waterfowl, swifts, swallows



and bats, as well as king fishers, great blue herons, osprey and bald eagles preying on
fish.

The National Park Service and the Bureau of Reclamation have both stated the
importance of understanding the aquatic food base in the Colorado River below GCD
through Grand Canyon National Park. This can only be accomplished through
continued monitoring which wilt add to the established data base and provide the
foundation for long-term adaptive management planning.

This report provides information on the following objectives;

objective 1: Monitor the effects of modified low fluctuating
flows from Glen Canyon Dam (GCD) on the
benthic community in the Colorado River between Glen Canyon
Dam and Diamond Creek.

objective 2: Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the
Colorado River between GCD and Diamond Creek.

Objective 3. Assess the benthos and drift of major tributaries in
Grand Canyon National Park.

Objective 4. Construction of an aquatic/riparian food web
using stable isotope analysis.
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Objective 1:

METHODS

Monitor the effects of modified low fluctuating
flows from Glen Canyon l)am (GCD) on the
benthic community in the Colorado River between
Glen Canyon Dam and Diamond Creek.

Biomass, composition, and habitat requirements of primary and secondary producers
were monitored during the low to moderate flow months of March, June and October
of each year within the mainstem of the Colorado River (g = 3 sampling trips per
year). Seven sites will be monitored at the start and end of three major sertions below
GCD, including Glen, Marble, and Grand Canyons (4 = 6 sites), and in Middle
Granite Gorge (s = 1 site, Table 1).

These locations generally correspond with the monitoring sites used by Blinn et al.
(1993, I994, 1995b) and Shannon et al. (1996b) with the following modifications.
The collection sites at the USGS gauging stations previously used by the NAU Aquatic
Food Base Program will be dropped because they provide limited information (Blinn
et al. 1992, I9E3, L994, Shannon et al. 1996b). These sites were originally selected
for continuous flow across the channel and uniform depth in a pool above a rapid for
gauging purposes, whereas pools below debris fans provide slow water velocities that
collect fine organic and sediment particles. The previous gauging sites will be
replaced with a site in the Middle Granite Gorge (RKM 203) to assess the food base of
the largest mainstem humpback chub aggregation (Valdez and Ryel 1995). Sites were
selected that will provide the most amount of information about the food base and for
fish monitoring programs based on the past seven years of collecting in the Grand
Canyon, and the allowed budget while decreasing river user days (Table 1).

Three habitat types (pools, riffles, and near shore habitats) were monitored at each
site. Sampling was conducted along three transects 30 m apart in each habitat type.
Petersen or Petit Ponar dredges will be used in the fine sediment and Hess substrate
samplers will be utilized on cobble bar riffles. Pool habitats were sampled at five
locations along the three transects; thalweg, <28 m3ls, baseflow (I42 m3/s), lower-
varial (-280 m3/s), and upper-varial (-500 m3/s). Cobble riffle collections were
taken at the greatest depth possible with three paired samples along with lower and
upper-varial samples.
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Table 1. Collection Sites, River Kilometer (RKM), Elevation (m), Orientation,
Reach Type, and Habitat in the Colorado River Below Glen Canyon Dam for
Cobble Riffles, Pools and Tributaries within Glen, Marble and Grand
Canyons, Arizona. Habiat describes area of collecting activity.

Name
IJ[en Canyon Gauge

2. I-ees Ferry
Ires Ferry Cobble

Paria River

Name
fTTvo-mileWash

Two-mile Cobble
Two-milePool
Cathedral Island

Vasey's Paradise

4. 60 Mile Gauge

Gauge above LCR

LCR Island

LCR

Name
l-ava Chuar

Tanner Canyon
Tanner Cobble
Bright Angel Creek

127 Mile Rapid
Middle Granite Gorge

Tapeats Creck
Kanab Creek
Havasu Creek

Spring Canyon
2O5 Mile Rapid

Spring Canyon Creek
Diamond Creek

GLEN CANYON
RKM Elevation Orientationr-- 

--

-?3.2 953 Southwest
Habitat
D;Tt-
Pool/Drift
Cobble

Tributary

Habitat
Drift
Cobble
Pool
Shore

Tributary

Pool

Shore/Drift

Cobble

Tributary

Reach Tvpe Habitat
Tributary

Wide Pool/Shore
Cobble/Drift
Tributary

Narrow Cobble/Drift
Pool/Shore

Tributary
Tributary
Tributary

Wide Pml/Shore
Cobble/Drift

Tribu@
Tributary

947 Southwest

Reach Tvpe
Narrow

Wide

MARBLE
RKM ElevationIr- 

-

2.gR 976
3.lR
3.lL
4.OL

50.9R

95.7L g3 1

98.4L
gg.6c

9[3.6L 926

CANYON
Orientationffi

0.0L
0.gR

1.0R

IO4.0R

1Og.gR
109.6L
140.9R

202.9R
203.2L

2r4.gR
23L 2R
249.6L

326.4R
32g.gR

327.2L
36r.6L

,t5.

6.

South Wide

GRAND CANYON
RKM Elevation Orientationr-

808 Southwest

739

616

610
572
544

15 I

4y
4l

Northeast

South7.
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Samples were processed live within 48 h and sorted into five biotic categories: C.
glomerata, Oscillatoria spp., detritus, miscellaneous algae and macrophytes, and
macroinvertebrates which were numerated into Gammarus lacustris, chironomid
larvae, simuliid lalae, and miscellaneous invertebrates. Miscellaneous invertebrates
included lumbriculids, tubificids, physids, trichopterans, terreshial insects and
unidentifiable animals. Detritus was composed of both autochthonous
(algaUbryophyte/macrophyte fragments) and allochthonous (tributary upland and
riparian vegetation) flotsam. Each biotic category was oven-dried at 60oC and
weighed to determine dry weight biomass. Samples were then ashed (500oC, t h), and
reweighed for ash free dry mass estimates. Preservatives alter biomass estimates and
accurate dry weights are required for building an energetics model. Adult and
pharate specimens will be collected with sweep nets, white and UV lights, spot
samples, and Thienemann collections for taxonomic verification. Specimens are
housed at NAU and logged according to NPS requirements.

Water temperature, dissolved oxygen, pH, specific conductance, substratum type,
microhabitat conditions, Secchi depth, water velocity or stage, depth, date, site, and
time of day will be recorded at each sanple site. Depth integrated light intensity data
loggers will be deployed at five collection sites. These sites corresponded with those
initiated in the FYW Steady High Flow hogram. Benthic biomass estimates were
compared between clear and turbid water sites with light as a predictor variable. The
protocol outlined above will help depict the relationship benveen benthic biomass,
discharge and light variability.

Nutrient levels were monitored at each collection site. The following nutrients were
analyzed; ammonia, phosphate and nitrate-nitrogen. Triplicate sa:nples were
collected, acidified and analyzed within one month of collecting on a Technicon Auto
Analyzer IIrM after digestion.

Shoreline habitats were sampled for invertebrates in emergent vegetation, fine
sediments and tychoplankton. These nearshore habitats have become quite extensive
throughout the river corridor due to steady, low fluctuating flows
and preliminary observations indicate they provide an important habitat for fish;
similar to retum current channels, but with greater stability. These low velocity near-
shore habitats, composed primarily of Equisetum (horsetails) may provide similar
habitat to backwaters, but are more abundant and readily available for invertebrate
and small fish colonization. Presently, only minimal data exists for these abundant
shoreline habitats. The following collections will be made from kayaks in an effort to
reduce damage to this fragile and potentially critical habitat.
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l)Triplicate harvests of shoreline emergent vegetation were taken in circular
stovepipe samplers (0.02 m2 area) just above the sediment, and screened as it's pulled
through the water column in an effort to capture macroinvertebrates associated with
the vegetation.

2)Triplicate plankton collections (156 pm,) were taken along the outer interface of
shoreline vegetation. Samples were preserved inTOVo EIOH and sorted in the lab with
a dissecting scope into the following categories: Copepoda (Calanoida, Cyclopoida,
Harpacticoida), Cladocera, Ostracoda, and miscellaneous zooplankton which include
small chironomids, Gammarus lacustris, planaria, hydra, etc. I-arge samples were
split with either 1 ml, 5 ml or trO ml sub-samples sorted from a 100 ml dilution.
Zooplankton densities of each category, general condition, reproductive state and
presence of nauplii were recorded. Samples were processed for dry mass estimates
and converted to ash-free dry mass using regression equations (Shannon et aI, 19%b).
The remaining organic material was filtered through a 1 mm sieve to remove CPOM
and then filtered onto glass fiber filter (Whatman@ GF/A, pm mesh) with a Millipore
Swinex@ system. These filters were dried at 60"C and combusted for t h at 500" C.
Volumetric estimates (mass/m3/s) were estimated from hand-pumping 15L of river
water at each transect.

3)Triplicate sediment samples were taken with a Petite Ponar (0.02 m2 area) and
sieved for benthic macroinvertebrates. Macroinvertebrates were processed with the
same protocol as emergent vegetation collections. Sediment was dried and sieved for
clast fractioning.

4) Six minnow traps (0.4S m x O.22 m) were set at an adjacent near-shore habitat for
12 h overnight to determine if fish utilize the habitat. Size, weight, total length, and
standard length of each fish species were determined. General condition factors were
determined for each fish population with the following equation:

K=W'X,
L3

where W = weight in grams, L = total length in millimeters and constant X = 105
(Moyle and Cech, 1988). This information will determine the importance of the
shoreline habitat for fish as a food resource and refuge. Appropriate permits were
obtained from Arizona Game and Fish and US Fish and Wildlife Service.

Multivariate statistical analysis (IMANOVA) using abiotic predictor variables and
biotic response variables were used to determine significant patterns in composition,
distribution and biomass of the benthic community. Also, relationships betrveen
AFDM of biotic components and the physical, chemical, spatial and temporal variables
were examined with multivariate canonical correspondence analysis (CANOCO, Ter



Braak lWL Palmer I9%). The SYSTAT computer software package (Version 5.1,
Wilkenson 1!)89) and/or the NAU mainframe wzrs used for all calculations.

Objective 2: Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the Colorado
River between GCD and Diamond Creek.

Drift was collected on each river trip from sites at or near the above sampling stations
(Table 1). Two components of stream drift were assessed:
1) Coarse Particulate Oreanic Matter (CPOIvO.
Near-shore surface drift samples (0-0.5 m deep) were collected at each pool site for
CPOM during each collection trip. Collections were taken in triplicate between 1000
h and 1500 h at each site to establish the affects of discharge on drift. Collections
were made with a circular tow net (48 cm diameter opening with 500 pm mesh) held
in place behind a moored pontoon raft or secured to the river bank. Samples were
sorted and processed live for biota as outlined for the shoreline emergent vegetation in
Objective 1. Current velocity was measured with a Marsh-McBirney electronic flow
meter and collection duration were measured for volumetric calculations (mass/m3/s).

2) Fine Particulate Orsanic Matter (FPOIvil. FPOM drift was collected at the same
time and with the same general protocol as CPOM (n = 3). The net has a 30 cm
diameter opening with 153 ;zm mesh. Samples were preserved inTOVo EIOH and
sorted in the lab with a dissecting scope according to procedures outlined in Objective
1 for plankton tows near shoreline vegetation.

Multivariate statistical analysis as outlined in Objective I was employed to
determine significant patterns in the composition, distribution and biomass of drift
along the river corridor.

OBJECTM 3. Assess the benthos and drift of major tributaries in
Grand Canyon National Park.

Benthic Collections: Aquatic macroinvertebrates, phytobenthos and detrifus were
collected during January 1999 from 11 major tributaries of the Colorado River
through Grand Canyon. At each tributary, two Hess samples were taken along three
transects, 30 m apart G = 6). All tributary transects were located above the influence
of the mainstem (>2,265 m3/s), starting at least 10 m above the mesquite line at the
old high water zone. Biomass samples were sorted into the five biotic categories as
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outline for benthic collections (Objective 1) in the Colorado River for comparison
with benthos in the mainstem

Taxonomis samples were collected, preservedinTDvo alcohol, identified to the lowest
taxonomic level possible, counted, and measured for total length. Water temperature,
dissolved oxygen (DO), pH, specific conductan@, and time of day were measured at
each sampling site. Current velocity and depth was measured at each sample location.

Drift Collections: Both CPOM (n = 3) and FPOM (n = 3) collections were made
following the same protocol as used in the mainstem (Objective 2). Tributary
discharge were estimated by measuring the channel geometry and water velocity along
a transect perpendicular to flow.

Past collections in the tributaries in Grand Canyon were made bimonthly in 1991 and
annually in June 1994 1993, 1994, I%, and 1997 by the NAU Aquatic Food Base
Monitoring Program. Shannon et al. (19%b) reported the month of January had the
highest biomass and biodiversity which supported findings by Hofknecht (1981). This
may result from low hydrologic disturbance during this period. June tributary
discharge changes were dependant on the timing and amount of snow-melt. Changing
the collection period is not only sound science but is also wise from a river ethic
standpoint. June is the peak commercial river running season and all of the perennial
streams in Grand Canyon are attraction sites.

This work is proposed to provide additional abiotic and biotic information on 11
major tributaries of the Colorado River through Grand Canyon National Park. These
tributaries vary widely in physicochemical characteristics and yield a variety of
different biotic communities, all of which may potentially invade the mainstem under
favorable conditions (Shannon et al. 1D6b). The information collected in this study
will help characterize the seasonal abiotic conditions of tributaries in the Canyon and
will provide information on their suitability as a habitat for native and exotic fishes.
It will also provide knowledge on the diversity and biomass of macroinvertebrates that
serve as food for native and exotic fishes in Grand Canyon. Some tributaries are
highly susceptible to flash floods and periods of reduced or no flow which are
common to many southwestern desert streams, while other spring-fed tributaries have
more stable flow conditions. A comparison of these widely disparate systems will not
only provide distributional infonnation on aquatic macroinvertebrates within the
Grand Canyon but will offer valuable information on abiotic variables that might
determine their distribution.

Monitoring these tributaries is also a valuable management tool for assessing biota that
are sensitive to changes within a given watershed. Therefore changes in land practices
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both within and outside the boundaries of Grand Canyon National Park may be
monitored. Management decisions such as seasonally adjusted steady flows, as
described in the U.S. Fish and Wildlife Service Biological Opinion, or the installation
of multiple withdrawal structures on GCD will have an impact on the aquatic food
base in the Colorado River. Both of these management options will have an influence
on at least the temperature range within the mainstem. Recruitment of aquatic
macroinvertebrates into the mainstem will initially be from the tributaries.
Understanding these tributaries may help resource managers determine reasonable
ranges for important variables such as seasonal water temperature and discharge
reglmes.

oBJEcrrvE 4. construction of an aquatic/riparian food web
using stable isotope analysis.

A valuable management tool, for critical ecosystem level decisions, is the development
of a comprehensive food web. To date, a data based food web has not been constructed
for the Colorado River ecosystem through the Grand Canyon aquatic/riparian
community. Blinn et al. (1994) presented an aquatic energetics model for the
tailwaters, Angradi (1994) developed a dual isotope model for Glen and Marble
Qanyons, and the NAU Aquatic Food Base Program used dual stable isotopes to track
the origin and composition of organic drift (Shannon et al. I9%b). The above data
sets were used to further expand our understanding of a system-wide food web with
an emphasis on native fish food habitats. Schell and Ziemann (1993) used 013C

rytYral isotope abundances to derive a food web in the Arctic coastal plain, which is
similar to the Colorado River ecosystem in terms of simplicity.

Food web construction using stable isotopes has the advantage of defining the source
of organic drift, which is visually unifonn and a critical carbon source in lotic
ecosystems. Stable isotope analysis also depicts what is assimilated by ?n organisal
which eliminates "last meal" bias, and the complication of digestion rates thit gut-
analysis alone can lead to (Rosenfield and Roff L99Z).

All potential major carbon sources within the aquatic/riparian communities of the
Colorado River ecosystem were collected and analyzed for 013C, 01sN,
and 0335 natural isotopic ratios. Triplicate samples of major plant and animal
components of the riparian and upland vegetation, the benthic communiry in the river,
and plankton from Lake Powell were taken throughout the Colorado River ecosystem.
Fish and bird samples were obtained from incidental deaths from the projects
monitoring these animals. The technique does not require the release of iadioactive
tracers to follow the path of 13C, l5N and 33S through a food web. Samples were
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air-dried immediately after collection in the field or laboratory and ground to a
powder (<0.05 mm particle size) with a Whir-LBugTM. Samples were analyzed with
a mass-spectrophotometer. We obtained muscle plugs or fin clips from endangered
fish for non-lethal data in cooperation with the fish monitoring projects.

Establishing Reference Data

Although the management objective for the aquatic food base states that it should be
"maintained or enhanced" the exact levels were not defined. After analysis of our data
from 3O-plus river trips and S0-plus collections in the Ires Ferry area we have
concluded that the data defining the aquatic food base in l99l was the most degmded.
It was during this time period of the GCES/ BOR sand movement research flows that
included two 3-d steady I42 fiP's-1 flows each month, highly variable ramping rates
and flows up to 934 m3's-1. We have since lea:ned that these flow regimes are the
worst possible for the aquatic food base. It was also during this time period that the
trout in Glen Canyon were in poor condition and native fish down river were also in
poor health from an increase in parasitism. Therefore a reference data set has been
developed for both pool and cobble habitats for each site which should be maintained
or enhanced.

A reference data set was developed by using the mean biomass for each bi-monthly
collection trip in I99L for Cladophora, Oscillatoria, detritus and macroinvertebrates
at each site. Miscellaneous algae, macrophytes and bryophytes or MAMB were not a
separate category in 1991 so the means from the 199t2 seasonal collections from each
site were used. This procedure results in six data points being used at each site for
each biotic category. MANOVA was then run for each monitoring collection trip
against the 1991 reference data.

Results of the MANOVA for each biotic factor or univariate probability would
indicate if the biotic resource was enhanced significantly, maintained or
nonsignificant change and if the biotic resource was degraded significantly. This
determination was made after comparing the mean data for the monitoring trip and
the 1991 reference data. An increase in biomass of the biotic categories
during monitoring would indicate an enhanced resource. Oscillatoria is
theontybioticfactorthatisdoesnoterihancetheaquaticT66ffiittr
increasing biomass, therefore reduced Oscillatoria biomass over l99l
reference data would be an enhanced rffiffi

L2



Objective 1:

RESULTS

Monitor the effects of modified low fluctuating
flows from Glen Canyon Dam (GCD) on the
benthic community in the Colorado River between
Glen Canyon l)am and Diamond Creek.

Water quality patterns were consistent with past collections; however, a decrease in
conductivity and an increase in dissolved oxygen concentrations were detected at all
collection sites (pages A1-A50)

Pool and cobble habitat biomass estimates either were maintained or degraded during
October 1998. This was probably because of very turbid conditions from tributary
input of sediment (A38) scouring the benthos. Discharge was also reduced during the
collection period with daily flows as low as 280 m3.s-1 (-10K cfs). These low flows
then expose any benthic colonization of the varial zone that may have occurred during
the summer.

Macroinvertebrate biomass estimates from March and June L999 were maintained in
comparison to l99I reference data (Table 2, Appendices). Most of the variability
was in the Cladophora, Oscillatoria and detrital estimates. These biotic categories are
sensitive to dam operations, with Oscillatoria increasing in the varial zone due to daily
fluctuating flows and detritus from tributaries moving through the study site. Also
you do not see Cladophora and Oscillatoria enhanced for a collection site.

Comparing June 1996 benthic biomass estimates to the L99L reference data showed the
biotic categories to either be maintained or enhanced (Iable 3). This collection trip
generally had the highest biomass estimates documented through the study site and
macroinvertebrate biomass was enhanced at allcobble sites. We can attribute this
pattern to consistent flows with little daily fluctuations and possibly a result of clear
water conditions from scour after the 1996 Spike Flow. These results indicate that if
during nonnal dam operations, including management or research flow scenerios, the
biotic factors comprising the food base were degraded at enough to warrant
remediation then we recommend steady flows of at least {QQ p3.s-l for several
months.
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Trblq 2. Cg4p"ttson of benthic biomass finm 1991 referenoe data to monitoring data collected from
Octo;ber 1998, March 1999 and June 1999 at nine sites in the Colorado River tfuough Grand Canyon.
Resulg of MANOVA are depicted as follows for each biotic factor; (+) resource enhanceA significintly,
(=) resource maintained, nonsignificant change and C) resource degraded significantly. Miscellaneous
algae, macrophytes and bryophytes are depicted by lr4AMB. Pool habitats are indicated by P and cobble
habitatsby C. Oscillatoria is the onl5r biotic factor that does not enhance the-aquatic food
base with increasing biomass, therefore a + means reduced Oscillatoria biom-ass over
1991 neference data.

Site/DaIe Cladophora Oscillatoria Detritus t\4AMB Macroinvertebnates

October 1998

Rkm 0.0 P

Rkm 0.8 C

Rkm 3.1 C

Rkm 95.7 P

Rkm 98.6 C

Rkm 108.8 P

Rkm 109.6 C

Rkm 326.4 P

Rkm 328.8 C

-

-

-

-
-
-
-
-

+

-
--
--

+

+

--

-
--
-

--
-

-
--

-
-

-
-

March 1999

Rkm 0.0 P

Rkm 0.8 C

Rkm 3.1 C

Rkm 95.7 P

Rkm 98.6 C

Rkm 108.8 P

Rkm 109.6 C

Rkm 326.4 P

Rkm 328.8 C

--

+

--
--
-
--

-
+

+

-
-
--

-
-

-
-

-
--

+

-

--
--
-
+

I

I

+

+

-
-
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Table 2 cnntinued

Site/Datg Cladophora Oscillatoria Detritus IUAMB Macroinvertebrates

June 1999

Rkm 0.0 P

Rkm 0.8 C

Rkm 3.1 C

Rkm 95.7 P

Rkm 98.6 C

Rkm 108.8 P

Rkm 109.6 C

Rkm 326.4 P

Rkm 328.8 C

fablg 3. Comparison of benthic biomass from 1991 reference data to data collected in June 1996 at nine
sites in the Colorado River throughGrand Canyon. This analysis demonstrates how r.gduced
daily flow_fluctuations can enhance the-aquatic food-base. Resulsof MANOVAaTe
depigte{9s follorvs foreach biotic factor; (+)resorirce enhanced significantly, (=) resource maintained,
nonsignificant change qld () resorrrce degraded significantly. Uiiettaneods'agae, macrophytes and
lrronhvtes are.depicted !V Y$nm._ Poolhabirats-are indicited by p and cobble"ha6it"t" u! d. 

_- -

WistheonIybioticfactorthatdoesnotenhaircetheaquaticfood.basewithincreasing biomass, therefore a + means reduced Oscillatoria bi6mass over l99l
reference data.

Sitr/DaIE Cladophora Oscillatoria Detritus I\4AMB Macroinvertebrates

+

--
--
--
--
-
--

+

--
--
+

+

--
--

=

+

+

+

+

+

--
+

--

+

+

--
+

--
--
+

June 1996
Rkm 0.0 P

Rkm 0.8 C
Rkm 3.1 C

Rkm 95.7 P

Rkm 98.6 C

Rkm 108.8 P

Rkm 109.6 C

Rkm 326.4 P

Rkm 328.8 C

-
--

--

-
--
--

=

+

+

-
+

-
+

-
+

+

--
+

--
+

--
--

--
+

--
+

-
+

--
+

--
--
--
-
-
--
--
+

--
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Objective 2z Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the Colorado
River between GCD and Diamond Creek.

Organic drift in the Colorado River below Glen Canyon Dam reflects both the
productivity of the benthos and scouring effects of daily fluctuating flows (Shannon et
al. 1996; A2O2-A320). October 19!A CPOM estimates for all sites was 0.13 g.m3.s-l
(SEt 0.04) with 857o of the mass in the form of detritus. This is a reflection 

-

tributaries in spate contributing to the organic budget of the mainstem. March 1999
CPOM estimates for all sites was 0.04 g.m3.s-l (SEt 0.00t with757o of the mass in
the form of detritus. June 1999 CPOM estimates for all sites was 0.07 g.m3. s-l (SEr
0.02) with l5%o of the mass in the form of detritus. In June UVo of the drift was
MAMB or carbon produced within the river channel (autochthonous). This is a
reflection of more phytobenthic diversity in the past couple of years (Shannon et al
L9y7).These estimates vary about the annual average from I9E3-1996 of 0.09 g.m3.s-
t (t 0.04).

ln 1997 miscellaneous macroinvertebrates (Trichoptera, Ephemeroptera, terrestrial
insects, etc.) contributed more to macroinvertebrate portion of CPOM since 1995
(Shannon et al 1998). However, this trend is changing to aquatic diptera larvae,
pharate Pupae and adults comprising the majority of the CPOM macroinvertebrate
drift; October 1998 337o; 6OVo March 1999;77% June lgg9.

Objective 3. Assess the benthos and drift of major tributaries in
Grand Canyon National Park.

We collected in January L99g. This dataset will be analyzed with the summary report
all tributary derta collected during the past 20 years. This report is scheduled ior 

-

completion in December 2ool, with an addtional trip in January 20f,/^.

Objective 4. Construction of an aquaticlriparian food web
using stable isotope analysis.

Preliminary analysis of !b samples indicate a typical aquatic/riparian food web in the
Coloroda River through Grand Canyon National Park (fig. t). Carbon and nitrogen
values for algae and aquatic invertebrates indicate that most of the invertebrates
assimilate carbon from algae. Riparian vegetation is similar to algae because these
samples were from the shoreline (horsetail, sedges, and reeds) and are getting there
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carbon directly from the river. Woody riparian vegetation litter, Tamarisk, willow
and cottonwoo4 show less of a riverine carbon sour@.

6lsN l0

Figure 1. Dual stable isotope plots for 01sN and 013C from the Colorado River in
Grand Canyon National Park. Boxes for each trophic level indicate the standard
deviation of the mean, with the mean in the center of each box.

Aquatic
lnverts.

Rip. Veg.
Herbaceous

Rip. Veg. Woody

Algae
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Terrestrial insects do not appear to be an important part of the food web for the
samFles_analyzed so far. Water fowl and terrestrial consumers both are comprised of
carbon from aquatic invertebrates. Fish show a riverine carbon source not terrestrial
and are nitrogen enriched (- +5 o/oo). ffis amoutrt of nitrogen enrichment between
trophic levels is high, indicating piscivory. Although severalinvestigators have
reported terrestrial insects in the guts of Colorado River fish (Valdei and Hoffnagle
L999;ValdezandRyle L995) theydonotcontributetothemassof thefish. Thesefish
may not consume enough terrestrial insects to be assimilated into the flesh of the
orgenisp or they can not process terrestrial insects.
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Chapter Three: Management Considerations
Aquatic Food Base Project Northern Arizona University

During th9 Pryt ygg o-f monitoring and research we continue to develop a large data base !o compare
P?ttern! which will add to our general knowledge of the aquatic community stnrcture in the Coloiado
River through G*9 Canyog. This knowledge can then be used in assisting the adaptive management
Process in determining how best to operate Glen Canyon Dam to conserve aquatic rbsources.

Status Of Aquatic Food Base: Patterns are very similarto those of 1D1; low benthic biomass and

-

Data from 199l"and 1999 are*rpuoUt"'*O ind*t" the lowest
biomass estimates for the decade

Pisch$rse: _ Flggluating flow_s above 566 ms. s- I (20K cfs) do not conserve the aquatic
food base.In 1997, we got our first exposure to the full use of the E.I.S. mandated flow regimis.
These flows included a minimum flow of l4Z np. s-r (fi cfs) with a maximum flow of 7G ma. s-r (25I(
cfs) with an up-ramp of no more than 114 m3. s-l (4K cfs) per hour and a down ramp of no more than

Q_^t' s_-_1_(1:5I( cf9) Per hour. Total daily fluctuations were to not exceed 142,l7O,2Z7 m3. s-l (5I(,
9I!, ot -85 cfs) fgr low, moderate or high delivery months respectively. We usually find an annual peak
in benthic mass during Ju-ne, however in 1999 ttrat did not halpen Oibte 3). This is probably becafse
the June collections Isrylly follow a period of relatively low 6irly spring flows from blen Cinyon Dam.
This was true until mid-May when the discharge pattern was elevated so the daily mudmum of April and
May (-500 m3'g-l; 18K cfs) was the daily minimum through the rest of the summer. These flows were
in response to above average snow pack in the upper-basin.
Recoqtme.ndgtign:]Vh"! flows from Glen Canyon Dam need to be elevated to gain
capacity in Lake Powell, flows over 566 m3.C-l (20K cfs) should be steady.

$pike,.Flow: Conditions in 2000 are not favorable for a quick recovery of the benthos
from the scouring a spikg flow will cause. Prior to the 1996 Spike Flow th-e food base biomass
was above levels ever recorded before, because of successive years of high and reduced fluctuating
flowp. This prolific growth coupled_with little tributary run-off that woul-d reduce light penetrationland
gtgady flows allorved fo1 re;grgyth fasrer than expected. We do not have an arer oihigh benthic
biomass for recolonization(Tqble_3), From past dxperiments on recolonizationwe wolld expect the
food base to take up to a year for full recovery.

@si'tydaysofsteadyflowsatthesamemagnitudeasthesteadyflows following the Spike Flow would- improve the rate of food base recoverJr.

Record of Decision Flows: Prior to any long term experimental flows a critical
ordofaeciJiona-isctiargeiegimeneedstooccur.Itwouldbe

prudent to document how these flows have affected each resource area that GCMRC and the adaptive
management stakeholders are responsible for. Especially considering that there is no long term
monitoring plan ln place t9 evaluate large scale changes ih dishcarge iegime; thermal modification,
seasonal adjugted steady flows, etc. An evaluation metric needs to be developed so that all resouroe
groups- have the same.way of examining flows. For example we have foundihe largest range of daily
lows in the ryon$ prior_1o collecting is a good variable foi assessing darn operafio;affects:
Recot4mendation: All resource groups analyze there data with the same metric of dam
operations as a predictor variable for a uniform and repeatable evaluation of atl
resources.
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!abl9 3. 
-Cornparison 

of benthic biomass from 1991 reference data to monitoring data collected from
October l9JE, March 1999 and June 1999 at nine sites in the Colorado River tfrroush Grand Canvon.
Results of MANoVA are d"pt.tr9.* follows for each biotic factor; (+) resource entrinceO signifidntiy,
(1) resource maintained, nonsignificant ghange and G) resouroe degraded significantly. Misdeilaneous
{gu:, maoophytesand bryo_phytes are depicGd by Meua. oscluatorif is the 6nly biotic factor
that does not enhan_c_e th9 aquatic food bise with inffiffi!-Ei6mass, theiefore a +
means reduced Oscillatgria -biomass over 1991 reference dita. This table includes only
cobble collectionsEGEifrese- habitats provide the mosrarea and mass to the aquatic food base. '

Sit€/Dale Cladophona Oscillatoria Detritus N{AMB Macroinvertebrates

October 1998

Rkm 0.8 C
Rkm 3.L C

Rkm 98.6 C

Rkm 109.6 C

Rkm 328.8 C

-
-

-

-
-

I
I

-

-

-

-

-
-
--

--

--
--

--

March 1999

Rkm 0.8 C

Rkm 3.1 C

Rkm 98.6 C

Rkm 109.6 C

Rkm 328.8 C

+

+

-

--

--
--

-
-

+

+

+

=

June 1999

Rkm 0.8 C
Rkm 3.1 C

Rkm 98.6 C

Rkm 109.6 C

Rkm 328.8 C

+

+

-
=

+

-
I

--
-
--

+

+

--

+

+

+

=
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Figure 2. Water temperature (oC) collected at Glen Canyon
Gauge Rkm -23.2 from October 1995 to June L999.
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Figure 34. Water temperature ( 0C) collected at Tanner
Canyon Rkm 108.8 from January I99I to June 1999.
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represents 15 g AFDM.m-z (! 8 SE).
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Figure 70. Cladophora biomass estimates (g AFDM.nt2 ) at
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1999. Error bars represent (1 1 SE, n=6).
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Figure 71. Miscellaneous algae, macrophytes and bryophytes
(MAMB) biomass estimates (g AFDM.m-2) at Two-Mile
Wash cobble Rkm 3.1 from January L991to June L999.
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Figure 72. Oscillatoria spp. biomass estimates (g AFDM.m-2)
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Figure 94. Cladophora biomass estimates (g AFDM.n2 ) at
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Figure 109. Detritus biomass estimates (g AFDM.rnz) at L27
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Figure 119. Miscellaneous algae, macrophytes and bryophytes
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Figure L25. Oligochaeta densities (#l# ) collected at2A5 Mile
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Figure 158. Macroinvertebrate biomass estimates (g AFDM.m-2 )
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Figure 163. Chironomid densities (#/m2 ) collected at 60
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Figure 169. Detritus biomass estimates (g AFDM.m2) at
Tanner Canyon pool Rkm 108.8 from January L99L to June
1,999. Error bars represent (t 1 SE, n=12).
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Figure 170. Macroinvertebrate biomass estimates (g AFDM .^2 )
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Figure 171. Lumbricid densitie s (#lm2 ) collected at
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Figure 173. Oligochaeta densities (#/m2) collected at Tanner
Canyon pool Rkm 108.8 from August 1992 to June L999.
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Figure 174. Simuliid densities (#lt& ) collected at Tanner
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Figure 175. Chironomid densities (#lmz ) collected at
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) collected at Tanner Canyon pool Rkm 108.8 from
1992 to June 1999. Error bars represent (t 1 SE,

A176



-
6t

FFI
H-\r*
l-\/
+)
o-(a
tFI
€)
R
Eoao
lr

*rl0
G
(,

r0

€ = tlt I O r (a \O C (a C (') \O C (v) \O e (a \O e (a \Oeeec)-ooe-o-oo-eo-eo-eo
Q{ lli tlr qn (!) S S t? S rt? tf) \O \C \g F f\ r\ € 6 € O\ g\g\ o\ o\ g\ g\ o\ g\ g\ o\ o\ o\ 6 6 6 g\ o\ o\ o\ o\ o\ g\ a\

1992-1999

Figure 177. Gastropod densities (#lmz ) collected at Tanner
Canyon pool Rkm 108.8 from August 1992 to June 1999.
Error bars represent (1 1 SE, n=12).
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Figure 178. Cladophora biomass estimates (g AFDM.rn2)
at Middle Granite Gorge pool Rkm 203.2 from October
1997 to June 1999. Error bars represent (1 1 SE, n=12).
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Gorge pool Rkm 203.2 from October t997 to June 1999.
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Figure 180. Oscillatoria spp. b.iomass estimates (g AFDM.m2)
at Middle Granite Gorge pool Rkm 203.2 from October L997
to June 1999. Error bars represent G I SE, n=LZ).
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Figure 181. Detritus biomass estimates (g AFDM.m-2) at Middle
Granite Gorge pool Rkm 203.2 from october Lg97 to June l9gg.
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Figure 182. Macroinvertebrate biomass estimates (g AFDM.m-2)
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June 1,999. Error bars represent (+ 1 SE, n=12).
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Figure 183. Lumbricid densitie s (#lm2 ) collected at Middle
Granite Gorge pool Rkm 203.2 from October 1997 to June
1999. Error bars represent (t I SE, n=12).
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Figure 185. Oligochaeta densities (#lm2) collected at Middle
Granite Gorge pool Rkm 203.2 from October L997 to June
1999. Error bars represent (t I SE, n=LZ).

A185



A

G|

E 100
-t

:tF\/
*).Fl
ca
t-(l)
A
-
€.-Eso

-t-aFIFI
o-l
ct)

e
F.{€g\

-t-r-{
F-o\

lggT -lggg

Figure 186. Simuliid densities (#/m2
Granite Gorge pool Rkm 203.2 from
L999. Error bars represent (t 1 SE,

) collected at Middle
October 1997 to June
r=12).

A186



-
N

F
F|FI

:tF
v

{r)
.-latFI
q)
AFI

E
o-
AEE
o
4
Iotr

oIl
dr-l

v

^-,v
r-{€o\

-t-r-{
F-o\

1997 -1999

Figure 187. Chironomid densities (#/m2 ) collected at
Middle Granite Gorge pool Rkm 203.2 from October L997 to
June 1999. Error bars represent @ 1 SE, n=12).
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(#lmz ) collected at Middle Granite Gorge pool Rkm 203.2
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Figure 189. Gastropod densities (#/m2 ) collected at Middle
Granite Gorge pool Rkm 203.2 from October L997 to June
1999. No abundances of Gastropods were present during
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Figure 191. Miscellaneous algae, macroplytes and bryophytes
(MAMB) biomass estimates (g AFDM.m-z) at Spring Canyon
pool Rkm 326.4 from January 1991 to June 1999. MAMB was
not collected prior to August 1992. Error bars represent (1 I
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Figure 195. Lumbricid densities (#lmz ) collected at Spring
Canyon pool Rkm 326.4 from August 1992 to June 1999.
Error bars represent (1 1 SE, n=12).
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Figure 196. Gammarus spp. densities (#/m2 ) collected at
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Figure 197. Oligochaeta densities (#/m2) collected at Spring
Canyon pool Rkm 326.4 from August 1992 to June 1999.
Error bars represent (t I SE, n=12).
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Figure 199. Chironomid densiti es (#lm2 ) collected at Spring
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Figule 200. Miscellaneous invertebrate (MM) densities
(#/mz ) collected at Spring Canyon pool Rkm 326.4 from
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Figure 201. Gasftopod densities (#/m2 ) collected at Spring
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Error bars represent (+ I SE, n=12).
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Figure 202. Average CPOM drift mass (g AFDM.m-3.r -l)
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Figure 203. Average CPOM drift mass (g AFDM.m-3.s-l)
of miscellaneous algae, rnacrophytes, and bryophytes
(MAI\@) collected at Glen Canyon Gauge Rkm -23.2 from
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Figure 204. Average CPOM drift mass (g AFDM.sl-3.s-1;
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Figure 205. Average CPOM drift mass (g AFDM.sl-3.r-1;
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Figure 206. Average CPOM drift mass (g AFDM.sl-3.s-11
for Gammarus spp. collected at Glen Canyon Gauge Rkm
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Figure 207. Average CPOM drift mass (g AFDM.*-3 .s-)
for miscellaneous macroinvertebrates (MM) collected at
Glen Canyon Gauge Rkm -23.2 from January 1994 to June
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Figure 208. Average CPOM drift densities (#/m3ls) fot
Simuliids collected at Glen Canyon Gauge Rkm -23.2 from
January 1994 to June L999. Error Bars represent (t I SE).
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Figure 209. Average CPOM drift densities (#/nf /s) for
Chironomids collected at Glen Canyon Gauge Rkm -23.2 from
January 1994 to June 1999. Error Bars represent e 1 SE).
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Figure 210. Average CPOM drift densities (#lnf/s) for
Gammarus spp. collected at Glen Canyon Gauge Rkm -23.2
from January L994 to June 1999. Error Bars represent (1 1
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Figure 211. Average CPOM drift densities (#/m3lr) fot
miscellaneous macroinvertebrates (MM) collected at Glen
Canyon Gauge Rkm -23.2 from January 1994 to June 1999.
Error Bars represent G 1 SE).
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Figure 217. Average CPOM drift mass (g AFDM.m-3.r -1)

for miscellaneous macroinvertebrates (MM) collected at
Lees Ferry Rkm 0.0 from September 1993 to June 1999.
Error Bars represent (t 1 SE).
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Figure 218. Average CPOM drift densities (#/m3lr) fot
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Figure 219. Average CPOM drift densities (#/m3/r) fot
Chironomids collected at l-ees Ferry Rkm 0.0 from
September 1993 to June 1999. Error Bars represent G 1 SE).
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for Cladophora collected at TWo-Mile lVash Rkm 2.9 from
January L994 to June 1999. Error Bars represent (1 1 SE).
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Figure 228. Average CPOM drift densities (#/m3 /s) for
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Figure 230. Average CPOM drift densities (#/m3ls) for
Gammarus spp. collected at Two-Mile Wash Rkm 2.9 from
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Figure 231. Average CPOM drift densities (#/m3 /s) for
miscellaneous macroinvertebrates (MM) collected at Two-Mile
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Figure 232. Average CPOM drift mass (g AFDM.m-3.r -1)

for Cladophora collected at the Gauge above LCR Rkm 98.4
from March 1995 to June 1999. Error Bars represent (1 1
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Figure 233. Average CPOM drift mass (g AFDM.m-3.s -1)
for miscellaneous algae, macrophytes and bryophytes
(MAI!B) collected at Gauge above LCR Rkm 98.4 from
March 1995 to June 1999. Error Bars represent (t I SE).
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Figure 235. Average CPOM drift mass (g AFDM.p-3., -f
for aquatic diptera collected at the Gauge above LCR Rkm
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Figure 236. Average CPOM drift mass (g AFDM.m-3.s -1)

for Gammarus spp. collected at the Gauge above LCR Rkm
98.4 from March 1995 to June 1999. Error Bars represent (1
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Figure 238. Average CPOM drift densities (#/m3 /s) for
Simuliids collected at Gauge above LCR Rkm 98.4 from March
1995 to June L999. Error Bars represent (t 1 SE).
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Figure 239. Average CPOM drift densities (#/m3/s) for
Chironomids collected at Gauge above LCR Rkm 98.4 from
March 1995 to June 1999. Error Bars represent (a 1 SE).
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Figure 240. Average CPOM drift densities (#lrrfl /s) for
Gammarus spp. collected at Gauge above LCR Rkm 98.4 from
March L995 to June 1999. Error Bars represent Ct I SE).
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Figure 242. Average CPOM drift mass (g AFDM.sl-3.s-11
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Figure,243. Average CPOM drift mass (g AFDM.m-3.s -1)

for miscellaneous algae, macrophytes and bryophytes
(MAMB) collected at Tanner cobble Rkm 109.6 from
September 1993 to June 1999. Error Bars represent (1 1
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Figure 244. Average CPOM drift mass (g AFDM.m -3.s -)
for detritus collected at Tanner cobble Rkm 109.6 from
September 1993 to June 1999. Error Bars represent G 1 SE).
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Figure 245. Average CPOM drift mass (g AFDM.- -3.r -)
for aquatic diptera collected at Tanner cobble Rkm 109.6
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Figure 246. Average CPOM drift mass (g AFDM.m-3 .s-1; for
Gammarus spp. collected at Tanner cobble Rkm 109.6 from
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Figurc 247 . Average CPOM drift mass (g AFDM.m-3.r -1)

for miscellaneous macroinvertebrates (MtO collected at
Tanner cobble Rkm 109.6 from September 1993 to June 1999.
Error Bars represent (t I SE).
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Figure 248. Average CPOM drift densities (#/m3lr) fot
Simuliids collected at Tanner cobble Rkm 109.6 from
September 1993 to June 1999. Error Bars represent G I SE).
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Figure 249. Average CPOM drift densities (#lm3ls) for
Chironomids collected at Tanner cobble Rkm 109.6 from
September 1993 to June 1999. Error Bars represent G I SE).
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Figure 250. Average CPOM drift densities (#/m3 /s) for
Gammarus spp. collected at Tanner cobble Rkm 109.6 from
September L993 to June 1999. Error Bars represent (t 1 SE).
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Figure 251. Average CPOM drift densities (#1m3lr) fot
miscellaneous macroinvertebrates (MM) collected at Tanner
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Figure 252. Average CPOM drift mass (g AFDM.*-3.r -1) fot
Cladophora collected at 127 Mile rapid Rkm 202.9 from
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Figure 253. Average CPOM drift mass (g AFDM.sl-3.s -)
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Figure 254. Average CPOM drift mass (g AFDM.m-3.s -1)

for detritus collecte d at 127 Mile rapid Rkm 202.9 from
September 1993 to June 1999. Error Bars represent Ct 1 SE).
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Figure 256. Average CPOM drift mass (g AFDM.m-3.s-1; for
Gammarus spp. collected at 127 Mile rapid Rkm 202.9 from
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Figure 257. Average CPOM drift mass (g AFDM.p-3.s -)
for miscellaneous macroinvertebrates (MM) collected at rz7
Mile rapid Rkm 2A2.9 from September 1993 to June 1999.
Error Bars represent G I SE).
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Figure 269. Average CPOM drift densities (#tnfl /s) for
Chironomids collected at 205 Mile rapid Rkm 328.8 from
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Figure 274. Average FPOM drift densities (#/m3ls) of
Harpacticoids collected at Glen Canyon Gauge Rkm -23.2 from
October 1995 to June L999.
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Figure 275. Average FPOM drift densities (#/m3 /s) of
Cladocera collected at Glen Canyon Rkm -23.2 from October
L995 to June 1999.
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Figure 276. Average FPOM drift densities (#/m3ls) of
Ostracods collected at Glen Canyon Gauge Rkm -23.2 from
October L995 to June 1999.
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Figure 282. Average FPOM drift densities (#/m3ls) of
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Figure 288. Average FPOM drift densities (#/m3lr) of
Calanoids collected at Two-Mile Wash Rkm 2.9 from October
1995 to June 1999.
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Figure 290. Average FPOM drift densities (#/m3lr) of
Haqpacticoids collected at Two-Mile Wash Rk* 2.9 ftom
October 1995 to June lgg9.

/^290



^\u)

cr)
F
F
-l

\/
f.-
ca
f,-(IJ
R
c€
Lq)
cJ
o€
cg

-U

200

100

c('i\o€fa\oo.q\oclp
=Qe-c€-e-=-tf.-9g\Ot\Ft\€€666g\g\g\60\g\g\6666\-\

Igg5-1ggg
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October 1995 to June 1999.
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Ostracods collected at Two-Mile Wash Rkm 2.9 from
October 1995 to June L999.
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Figure 293. Average FPOM drift densities (#/m3lr) of
miscellaneous zooplankton (benthic origin) collected at
Two-Mile Wash Rkm 2.9 from October 1995 to June L999.
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Figure 297. Average FPOM drift densities (#/m3/r) of
Calanoids collected at Guage Above LCR Rkm 98.4 from
October 1995 to June 1999.
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Figure 300. Average FPOM drift densities (#/m3 /s) of
Ostracods collected at Guage Above LCR Rkm 98.4 from
October L995 to June 1999.
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Figure 301. Average FPOM drift densities (#/m3/r) of
miscellaneous zooplankton (benthic origin) collected at
Guage Above LCR Rkm 98.4 from October 1995 to June
1999.
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of lentic origin for Calanoida, Cyclopoida, Cladocera and
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Figure 303. Average miscellaneous zooplankton biomass
(g AFDM.m-3.s -) of benthic origin collected at Gauge Above
LCR Rkm 98.4 from October 1995 to June L999.
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Figure 304. Average FPOM drift densities (#lnfls) of
Calanoids collected at Tanner Cobble Rkm 109.6 from
October 1995 to June L999.
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Figure 305. Average FPOM drift densities (#lm3ls) of
Cyclopoids collected at Tanner Cobble Rkm 109.6 from
October L995 to June 1999.
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Figure 306. Average FPOM drift densities (#/m3/r) of
Harpacticoids collected at Tanner Cobble Rkm 109.6 from
October 1995 to June 1999.
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Figure 307. Average FPOM drift densities (#/m3 /s) of
Cladocera collected at Tanner Cobble Rkm 109.6 from October
1995 to June 1999.
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Figure 308. Average FPOM drift densities (#/m3 /s) of
Ostracods collected at Tanner Cobble Rkm 109.6 from October
1995 to June L999.
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Figure 309. Average FPOM drift densities (#/m3lr) 
"fmiscellaneous zooplankton (benthic origin) collected at Tanner

Cobble Rkm 109.6 from October 1995 to June L999.
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Figure 310. Average zooplankton biomass
of lentic origin for Calanoida, Cyclopoida,
Ostracoda collected at Tanner Cobble Rkm
October L995 to June 1999.
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Figure 311. Average miscelanpous zooplankton biomass of
benthic origin (g AFDM.m-'.s-') collected at Tanner Cobble
Rkm 109.6 from October 1995 to June 1999.

1995-1999

A3 11



AUU
U)

CAa
FE

:fF\/

rJ'6 40
t-q)
A
-
15
.Fl
o
AEjq
6! 20
IJ

^-,v
r-{
6g\

1998-1999

Figure 312. Average FPOM drift densities (#/#/s) of
Calanoids collected at 127 Mile Rapid Rkm 202.9 from March
1998 to June 1999.

A312



,-t 300
U)

-.a

ta
I
F---:fF\/

-'a 200s
-lq)
A
-
E
.I

oa
oE roo
h
U

r-t

-t-{€
o\

r998-r999

Figure 313. Average FPOM drift densities (#/# /s) of
Cyclopoids collected at L27 Mile Rapid Rkm 202.9 from March
1998 to June 1999.
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Figure 314. Average FPOM drift densities (#/m3lr) of
Harpacticoids collected at 127 Mrle Rapid Rkm 202.9 from March
1998 to June 1999.
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Figure 316. Average FPOM drift densities (#/m3lr) of Ostracods
collected at L27 Mile Rapid Rkm 202.9 from March 1998 to June
1999.

A'3 16



A
U2-.-

(r)
AHI
h
-7

*f
.-l
ca
AIIq)
R
t-o+)&a
FI
G

-la
ô
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Figure 317. Average FPOM drift densities (#/m3lr) of
miscellaneous zooplankton (benthic origin) collected at I27 Mile
Rapid Rkm 202.9 from March 1998 to June 1999.
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Figure 318. Average zooplankton biomass (g AFDM.m-3.s-1)
of lentic origin for Calanoida, Cyclopoida, Cladocera and
Ostracoda collected at 127 Mile Rapid from March 1998 to
June 1999.
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Figure 319. $verage miscellaneous zooplankton biomass
(g AFDMesl-ros-r) of benthic origin collected at L27 Mile
Rapid from March 1998 to June 1999.
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Figure 320. Average FPOM drift densities (#/m3lr) of
calanoids at 205 Mile Rapid Rkm 328.8 from october 1995 to
June 1999.
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Figure 321. Average FPOM drift densities (#/m3/r) of
Cyclopoids at 205 Mile Rapid Rkm 328.8 from October 1995 to
June L999.
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Figure 322. Average FPOM drift densities (#/m3lr) of
Harpacticoids at 205 Mile Rapid Rkm 328.8 from october lggs
to June 1999.
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Figure 323. Average FPOM drift densities (#/m3lr) of
Cladocera at205 Mile Rapid Rkm 328.8 from October 1995 to
June L999.
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Figure 324. Average FPOM drift densities (#/m 3/r) of
Ostracods at 205 Mile Rapid Rkm 328.8 from October 1995 to
June 1999.
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Figure 325. Average FPOM drift densities (#/m3l") ot
miscellaneous zooplankton (benthic origin) at205 Mile Rapid
Rkm 328.8 from October 1995 to June l9gg.
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Figure 326. Average zooplankton biomass (g AFDM.m-3.s-1)
of lentic origin for Calanoida, Cyclopoida, Cladocera and
Ostracoda collected at205 Mile Rapid Rkm 328.8 from
October L995 to June 1999.
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Figure 327. Avenge miscellaneous zooplankton biomass
(g AFDM.ln-3.r-l; of benthic origin collected at 205 Mile
Rapid Rkm 328.8 from October 1995 to June lgg9.
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