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ABSTRACT

Discharge from Glen Canyon Dam (GCD) strongly influences the lower trophic levels
(phytobenthos and macnrinvertebrates) of the aquatic ecosystem in Grand Canyon
National Park. The aquatic food base in the Colorado River is affected by the
duration and timing of low releases from GCD, as well as the range of daily
fluctuations. The overall objectives of this project are to seasonally monitor the effect
of discharge characteristics below GCD, under modified low fluctuating flow criteria,
on the distribution, standing mass and composition of primary and secondary
producers in the benthos and drift, and to examine the linkages between lower and
higher trophic levels. This information is critical because the lower aquatic trophic
levels provide essential resources to both aquatic and terrestrial components of the
fluvial ecosystem in Grand Canyon National Park.

Jume 2000 water quality monitoring of the Colorado River below GCD is within the
typical seasonal ranges for conductivity, pH and dissolved oxygen. River temperature
increased from 10.7" to 18.8"C at Diamond Creek as a result of the steady 8,000
flows. We have insufficient baseline data to determine if nutrient concentnations are
within typical ranges. Overall Oscillatoria and Cladophora biomass estimates were
lower than in June 2000 in comparison to 1999. However, MAMB and denitus
increased. Macroinvertebrate mass estimates were greater than the 1991 reference
data in June 2000 at RKM 0.8, Lees Ferry cobble bar and 98.6 RKM 3.1, just above
the LCR. All other macroinvertebrate estimates are equal to 1991 data at those sites.
Macroinvertebrate composition and biomass was skewed by a large increase in snail
number in Glen and Marble Canyons These patterns are very similar to those of
1991; low benthic biomass and taxa richness with high variability.

Dual stable isotope analysis in the regulated Colorado River through Grand Canyon
National Park, USA, revealed a food web that varied both temporatty and spatially
through this arid biome. Down river enrichment of Sl3C data was detected across
three trophic levels resulting in a sectioned food web. Both native and introduced
sport fishes were dependent on the alien post- dam aquatic food base for sustenance.
Fish trophic position is positively correlated with standard length indicating piscivory
by larger fishes.
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INTRODUCTION

Discharge from Glen Canyon Dam (GCD) strongly influences the lower trophic levels
of the aquatic ecosystem in Grand Canyon National Park (Blinn et al. 19y2,1993,
1994,1995a,b,1998, Shannon et al. 1996a). The aquatic food base in the Colorado
River is affected by the dunation and timing of low releases from GCD, as well as the
range of daily fluctuations. The objectives of this project is to seasonally monitor the
effects of discharge characteristics below GCD, under the Bureau of Reclamation's
modified low fluctuating flow criteria, on the composition, distribution and standing
mas$ of primary and secondary producers in the benthos and drift. This information
is valuable because the lower aquatic trophic levels provide essential resources for
both aquatic and terrestrial components of the fluvial ecosystem.

Grand Canyon National Park's Colorado River Management Plan (NPS 1989) states
that its resource management goals are oto preserve the natural resources and
environmental processes of the Colorado River corridor and the associated riparian
and river environments.... (and) to protect and preserve the river corridor
environment (NPS 1989:9). Among its objectives are:
1) nestablish.....a long-term monitoring progam to assess changes in the status of
natural....resources. This program will require definition of present resource status
(NPS 1989:10)"; and 2) nadvocate and support operational objectives for the Glen
Canyon Dam (GCD) which are most compatible with protection of the intrinsic
resources of the Colorado River within Grand Canyon National Park (NPS 1989:10).
The aquatic food base is an integral part of the natural resources in Grand Canyon
National Park-

The Secretary of the Interior authorized implementation of modified low fluctuating
flow criteria from Glen Canyon Dam (GCD) in August 1996 based on the
recommendations set forth by the Environmental Impact Statement (1990-1992).
These flows are designed to mitigate impacts of dam operations on downstream
riverine resources. The flows consist of low-, mediuin-, and high-volume months,
with low flows during the spring and late fall, moderate flows in May and September,
and high flows during mid-summer and mid-winter. These flows have a maximum
discharge of 566 m3 s-1, a reduced range of daily fluctuation, and reduced up- and
down-ramping rates.

The Environmental Impact Statement (US8R,1995) on the operation of GCD
identified the aquatic food base as an "indicator resource" and important habitat for
wildlife. Wildlife linked directly to the aquatic food base include native and non-
native fish, insectivorous birds and bats, reptiles and waterfowl. Indirect links to the
aquatic food base include peregrine falcons feeding on waterfowl, swifts, swallows



and bats, as well as king fishers, great blue herons, osprey and bald eagles preying on
fish.

The National Park Service and the Bureau of Reclamation have both stated the
importance of understanding the aquatic food base in the Colorado River below GCD
through Grand Canyon National Park. This can only be accomplished through
continued monitoring which will add to the established Oata Uase and providJthe
foundation for long-term adaptive management planning.

This report provides information on the following objectives;

Objective 1: Monitor the effects of modified low fluctuating
flows from Glen Canyon Dam (GCD) on the
benthic community in the colorado River between Glen canyon
Dam and Diamond Creek.

Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the
Colorado River between GCD and Diamond Creek.

Assess the benthos and drift of major tributaries in
Grand Canyon National Park.

Construction of an aquatic/riparian food web
using stable isotope analysis.

Preliminary analyses on the use of Cladophora.
Oscillatoria. and total plant carbon as indices for
general community health of the regulated Colorado
River below Glen Canyon Dam, Arizona.
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Objective 2:

Objective 3.

Objective 4.

Objective 5.
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Objective 1:

METHODS

Monitor the effects of modified low fluctuating
flows from Glen Canyon l)am (GCD) on the
benthic community in the Colorado River between
Glen Canyon l)am and l)iamond Creek.

Biomass, composition, and habitat requirements of prirnary and secondary producers
were monitored during the low to moderate flow months of March, June and October
of each year within the mainstem of the Colorado River (n = 3 sampling trips per
year). Seven sites will be monitored at the start and end of three major sections below
GCD, including Glen, Marble, and Grand Canyons (n = 6 sites), and in Middle
Granite Gorge G= I site, Table 1).

These locations generally correspond with the monitoring sites used by Blinn et al.
(1993, 1994,1995b) and Shannon et al. (1996b) with the following modifications.
The collection sites at the USGS gauging stations previously used by the NAU Aquatic
Food Base Program will be dropped because they provide limited information (Blinn
et al. 1992,1993,1994, Shannon et al. 1996b). These sites were originally selected
for continuous flow across the channel and uniform depth in a pool above a rapid for
gauging purposes, whereas pools below debris fans provide slow water velocities that
collect fine organic and sediment particles. The previous gauging sites will be
replaced with a site in the Middle Granite Gorge (RKM 203) to assess the food base of
thc largest mainstem hunpback chub aggregation (Valdezand Ryel 1995). Sites were
selected that will provide the most amount of information about the food base and for
fish monitoring programs based on the past seven years of collecting in the Grand
Canyon, and the allowed budget while decreasing river user days (Table 1).

Three habitat Wpes (pools, riffles, and near shore habitats) were monitored at each
site. Sampling was conducted along three transects 30 m apart in each habitat type.
Petersen or Petit Ponar dredges will be used in the fine sediment and Hess substrate
samplbrs will be utilized on cobble bar riffles. Pool habitats were sampled at five
locations along the three transects; thalweg, 48 rr9ls, baseflow (142 m3/s), lower-
varial (-280 m3/s), and upper-varial (-500 m3/s). Cobble riffle collections were
taken at the greatest depth possible with three paired samples along with lower and
upper-varial samples.
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Table 1. Collection Sites, River Kilometer (RKM), Elevation (m), Orientation,
\"*! Tp", and Habitat in the Colorado River Below Glin Canyon Dam for
Cobble Riffles, Pools and Tributaries within GIen, Marble and drand
Canyons, Arizona. Habitat describes area of collecting activity.

Name
l. Glen Canyon Gauge

2. I-ees F*rry
I-ees Ferry Cobble

Paria River

Namer-E

3. Two-milelVash
Two-mile Cobble
Twomile Pool
Cathedral Island

Vaseyos Paradise

4. 60 Mile Gauge

Gauge above LCR

LCR Island

LCR

IYame
[-ava Chuar

5, Tanner Canyon
Tanner Cobble
Bright Angel Creek

6. In Mile Rapid
Middle Granite Gorge

Tapeats Creek
Kanab Creek
Havasu Creek

7 . Spring Canyon
zOSMile Raprd

Spring Canyon Creek
Darnond Creek

RKM
-?3.2

o.oL
o.gR

l.oR

RKM
2.gR
3.lR
3.lL
4.OL

50.9R

95.7L

9{3.4I

g{3.6C

%.6L

RKM
104.0R

1Og.gR
l09.6l-
140.9R

202"9R
203.2L

214.9R
?31-2R
249.6L

326.4R
32g.gR

3n.2L
361.6L

GLEN CANYON
Elel'4lion grieptation &e=ach Type Habitat953 southwest Narrow ffi

9/17 Southwest Wide Pool/Drift
Cobble

Tributary
MARBLE CANYON
Eteyglion origntqtiqn Reach Type Habitats76 South Wide ffit-

Cobble
Pool
Shore

831 South TVide

Tributary

Pool

Shore/Drift

Cobble

Tributary

GRAND CANYON
Btsljrtion Orientation Reach Type llabitat

Tributarry815 Tribr

8oB Southwest Wide Pool/Shore
Cobble/Drift

739 Triburary

616 Northeast Narrow CobblelDrift
PoollShore

|5l South

Tributary
Tributary
Tributary

lVide PooUShore
CobblelDrift

Tributary
Tributary

I
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I Samples were processed live within 48 h and sorted into five biotic categories: Q,'
glomerata. Oscillatoria spp., defitus, miscellaneous algae and macrophytes, and
macroinvertebrates which were numerated into Cremmefgs.lacustris. chironomid
larvaen simuliid larvae, and miscellaneous invertebrates. Miscellaneous invertebrates
included lumbriculids, tubifi cids, physids, trichopterans, terrestrial insects and
unidentifiable animals. Detritus was composed of both autochthonous
(algal/bryophyte/macrophyte fragments) and allochthonous (tributary upland and
riparian vegetation) flotsam. Each biotic category was oyen-dried at 60"C and
weighed to determine dry weight biomass. Samples were then ashed (500"C, I h), and
reweighed for ash free dry mass estimates. Pneservatives alter biomass estimates and
accurate dry weights are required for building an energetics model. Adult and
pharate specimens will be collected with sweep nets, white and UV lights, spot
samples, and Thienemann collections for taxonomic verification. Specimens are
housed at NAU and logged according to NPS requirements.

Water temperature, dissolved orygen, pH, specific conductance, substratum type,
microhabitat conditions, Secchi depth, water velocity or stage, depth, date, site, and
time of day will be recorded at each sample site. Depth integrated light intensi{ data
loggens will be deployed at five oollection sites. These sites corresponded with those
initiated in the FYn Steady High Flow Program. Benthic biomass estimates were
compared between clear and turbid water sites with light as a predictor variable. The
protocol outlined above will help depict the relationship between benthic biomass,
discharge and light variability.

Nutrient levels were monitored at each collection site. The following nutrients were
analyzed; ammonia, phosphate and nitrate-nitrogen. Triplicate samples were
collected, acidified and analyzed within one month of collecting on a Technicon Auto
Analyzer IIil after digestion.

Shoreline habitats were sampled for invertebrates in emergent vegetation, fine
sediments and tychoplankton. These nearshore habitats have become qllitg extensive
throughout the river corridor due to steady, low fluctuating flows
and preliminary observations indicate they provide an important habitat for fish;
similar to return current channels, but with greater stability. These low velocity near-
shore habitats, composed primarily of Equisetum (horsetails) may provide similar
habitat to backwaters, but are more abundant and readily available for invertebrate
and small fish colonization. Prescnfly, only minimal data exists for these abundant
shoreline habitats. The following collections will be made from kayaks in an effort to
reduce damage to this fragile and potentially critical habitat.

7
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l)Triplicate harvests of shoreline emergent vegetation were taken in circular
sjovepipe- samplers Q.Az m2 area) just above ti'e sediment, and screened as it's pulled
through the water column in an effort to capture macroinvertebrates associated with
the vegetation.

2)Triplicate plankton collections (156 ttm,) were taken along the outer interface of
shoreline vegetation. Samples were preserved inTO% EtOH-and sorted in the lab with
a dissecting 

-scope 
into the following iategories: copepoda (calanoida cyclopoida,

U"tp-""{9oida), Cladocera, Ostracoda, ani miscellaneous zooplankton which include
small chironomigs, gaqmarug lacu$tnq. planaria, hydra, etc. L-arge samples were
split with either I ml, 5 ml or l0 ml sub-samples sorted from a td'O ml dilution.
Zooplankton densities of each category, general condition, reproductive state and
presence of nauplii were recorded. Samples were processed ior dry mass estimates
and converted to ash-free dry mass uslng regression equations (Shinnon 

"rur, 
igdUl.

The remaining organic material was filtEredthrough 
" 

t *- siLve to remove CPOM
and then filtered onto glass fiber filter (Whatmand CF/l , Fftmesh) with a fr,fiffip"r"
Svinex@ systgm. These filters were dried at 60"C and combusted for I h at 500"C.
Volumetric estimates (mass/nr3/s) were estimated from hand-pumpin! f SI- oi;;";
water at each transect.

3)Triglt-cat9 sediment samples were taken with a Petite Ponar (0.02m2 area) and
sieved for benthic macroinvertebrates. Macroinvertebrates *ir" processed with the
same protocol as emergent vegetation collections. Sediment tuas dri"d and sieved for
clast fractioning.

4) Six minnow traps (0.48 mxA.22m) were set at an adjacent near-shore habitat for
12 hovernigh! to determine if fish utilize the habitat. Siie, weight, total length, and
s-tandard length of each fish species were determined. General iondition faclon were
determined for each fish population with the following equation:

K= W.X.
I3

Y!o9 1ry = leight in grams, L = total length in millimeters and constant X = l$s
(Moyfe and Cech, 1988). This informatio-n will determine the importance of the
shoreline habitat for fish as a food resource and refuge. Appropriate permits were
obtained from Arizona Game and Fish and US Fish and Wiidfif6 Service.

Multivariate statistical analysis (MANOVA) using abiotic predictor variables and
9lod: response variables were used to determine iignificant patte*r il;;;poritiott,
distribution and biomass of the benthic community.- Also, reiationships between
AFDM of biotic components and the physical, chimical, spatial and temporal variables
were examined with multivariate canonical correspondencb analysis (CANOCO, Ter

I
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Braak 1992, Palmer 1993). The SYSTAT computer software package (Version 5.1,
Wilkenson 1989) and/or the NAU mainframe was used for all calculations.

Objective 2: Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the Colorado
River between GCD and Diamond Creek.

Drift was collected on each river trip from sites at or near the above sampling stations
(Iable l). Two components of stream drift were assessed:
l) Coarse Particulate Organic Matter (CPOM).
Near+frore surface drift samples O{5 - d*p) were collected at each pool site for
CPOM during each collection trip. Collectioni were taken in riplicate benyeen 1000
h and 1500 h at each site to establish the affects of discharge on drift" Collections
were made with a circular low net (48 cm diameter opening with 5fi) pm me.sh) held
in place behind a moorcd pontoon raft or secured to the river bank Samples were
sorted and processed live for biota as outlined for the shoreline emergent vegetation in
Objective l. Current velocity w:rs measured with a Marsh-McBirney electronic flow
meter and collection duration were measured for volumetric calculations (rnasdnr3/s).

2) Fine Particulate Organic Matter (FPOM). FPOM drift was collected at the same
time and with the same general protocol as CPOM (lI= 3). The net has a 30 cm
diameter opening with 153 pm mesh. Samples wene preserved in70% EIOH and
sorted in the lab with a dissecting scope according to procedures outlined in Objective
I for plankton tows near shoreline vegetation.

Multivariate statistical analysis as outlined in Objective I was employed to
determine significant patterns in the composition, distribution and biomass of drift
along the river corridor.

OBJECTIYE 3. Assess the benthos and drift of major tributaries in
Grand Canyon National Park.

Renthic Collections: Aquatic macroinyertebrates, phytobenthos and detritus were
collected during January 1999 from 11 major tributaries of the Colorado River
through Grand Canyon. At each tributary, two Hess samples were taken along three
transects, 30 m apart (II= 6). All tributary transects were located above the influence
of the mainstem (>2,?65 m3/s), starting at least 10 m above the mesquite line at the
old high water zone. Biomass samples were sorted into the five biotic categories as



outline for benthic collections (Objective l) in the Colorado River for comparison
with benthos in the mainstem.

Taxonomic samples were collected, preserved in7}Vo alcohol, identified to the lowest
taxonomic level possible, counted, and measured for total length. Water temperature,
dissolved o-Ivse-n (DO), pH, specific conductance, and time oflay were measured at
each sampling site. Curent velocity and depth was measured at each sample location.

DtiftCgUssli9tlg: Both CrcM (g-= 3) and FPOM (g-= 3) collections were made
fo.llowing the same protocol as used in the mainstem (Objective 2). Tributary
discharge were estimated by_measuring the channel g**"try and water velocity along
a transect perpendicular to flow.

Past collections in the tributaries in Grand Canyon were made bimonthly in 1991 and
3qnullly in June 1992,1993,1994,1996, and i997 by the NAU Aquatic Food Base
fv.Io$to1t1g Program. Shannon et al. (1996b) reportid the month of J*u"ry had the
highest biomass and biodiversify which supporteb findings by Hoftnecht (liSl). This
lay result from low hydrologic disturbanti during this period. June tributary
discharge thangeg lgre dependant on the timing anA amount of snow-melt. Ciranging
the collection period is not only sound science but is also wise from a river ethic
standpoint. June il the peak commercial river running season and all of the perennial
sffeams in Grand Canyon are attraction sites

This work is proposed to provide additional abiotic and biotic information on 1l
major tributaries of the Colorado River through Grand Canyon National Park. These
{9ot"ti"|Iary widely in physicochemical chiracteristics and yield a variery of
different biotic communities, all of which may potentially invade the mainsiem under
favorable conditions (Shannon et al. 1996b). The information collected in this study
will help characterize the seasonal abiotic conditions of tributaries in the Canyon and
will-provide information on their suitability as a habitat for native and exotic fishes.
It will also prolide knowledge on the diveisity and biomass of macroinvertebrates that
setre as food for native and exotic fishes in drand Canyon. Some tributaries are
highly susceptible to flash floods and periods of reduced or no flow which are
common to many southwestern desert streams, while other spring-fed tributaries have
more stable flow conditions. A comparison of these widely dispiate systems will not
gnly grgvide distributional information on aquatic macroinvertibrates within the
prand panyon but will offer valuable information on abioric variables that might
determine their distribution.

Monitoring these tributaries is also a valuable management tool for assessing biota that
are sensitive to changes within a given watershed. fherefore changes in lani practices
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both within and outside the boundaries of Grand Canyon National Park may be
monitored. Management decisions such as seasonally adjusted steady flows, as
described in the U.S. Fish and Wildlife Service Biological Opinion, or the installation
of multiple withdrawal structures on GCD will have an impact on the aquatic food
base in the Colorado River. Both of these management options will havL an influence
on at least the temperature range within the mainstem. Recruitment of aquatic
macroinvertebrates into the mainstem will initiallv be from the tributaries.
Understanding these tributaries may help resour"" -*"gers determine reasonable
ranFes for important variables such as seasonal water temperature and discharge
reglmes.

OBJECTTVE 4. construction of an aquatic/riparian food web
using stable isotope analysis

A valuable management tool, for critical ecosystem level decisions, is the development
of a cornprehensive food web. To date, a databased food web has not been constructed
for the Colorado Riverecosystem through the Grand Canyon aquatic/riparian
co.mmunity. Blinn et al. (1994) pt"s"ntJd an aquatic energetio rnod"l for the
tailwaters, Angradi {1994) developed a dual isotope model for Glen and Marble
Qanyons, and the NAU Aquatic Food Base Program used dual stable isotopes to track
the origin and composition of organic drift (Shannon et al. 19%b). The above data
sets were used to further expand our understanding of a system-wide food web with
an emphasis on native fish food habitats. Schell and Zemann (1993) used 613C

ryqPl isotope abundances to derive a food web in the Arctic coastai plain, which is
similar to the Colorado River ecosystem in terms of simplicity.

Food web construction using stable isotopes has the advantage of defining the source
of organic drift, which is visually uniform and a critical carbon source in lotic
ecosystems. Stable isotope analysis also depicts what is assimilated by an organism,
which eliminates "last meal'o bias, and the complication of digestion rates thit gut-
analysis alone can lead to (Rosenfield and Roff l99Z).

All potential major carbon sources within the aquatic/riparian communities of the
Cslorado River ecosystem were collected and analyzedlor 613C, 015N,
and 0335 natural isotopic ratios. Triplicate samplei of major plant and animal
components of the riparian and upland vegetation, the benthic community in the river,
119 planfton from Lake Powell were taken throughout the Colorado River ecosystem.
Fish and bird samples were obtained from incidental deaths from the projects
monitoring these animals. The technique does not require the release of iadioactive
tracers to follow the path of l3C, l5N and 33S through a food web. Samples were



air-dried immediately after collection in the fietd or laboratory and ground to a
powder (d.05 mm particle size) with a Whir-L-BugrM. Samples *ire analyzed with
l TTs-spectrophotometer. We obtained muscle plugs or fin clips from endangered
fish for nonlethal data in cooperation with the fish monitoring projects. e

Establishing Reference Data

$lthgug-h the management objective for the aquatic food base states that it should be
"maintained or enhanced" the exact levels were not defined. After analysis of our data
from 30-plus river trips and 80-plus collections in the lres Ferry area we have
concluded that the data delnlng the aquatic food base in 1991 was the most degraded.
It was during this time period of the CtBSI BOR sand movement research flois that
included two 3-d-steady 142 m3's-l flows each month, highly variable ramping rates
and flows up to 934 m3's-1. We have since learned that these flow regi*"t 

"6 
th"

worst possible for the aquatic food base. It was also during this time period that the
trout in Glen Canyon were in poor condition and native fish down river were also in
poor health from an increase in parasitism. Therefore a reference data set has been
developed for both pool and cobble habitats for each site which should be maintained
or enhanced.

A reference data 1"IIT developed by using the mean biomass for each bi-monthly
collection trip in l99l for Cladophora. Oscillatoria. detritus and macroinvertebraies
at each site. Miscglllqeous algae, macroph5rtes and bryophytes or MAMB were not a
separate category in 1991 so the means from the 1992 seasonal collections from each
site were used. This procedure results in six data points being used at each site for
eacf biotic 91!egory. MANOVA was then run for each monitoring collection trip
against the 1991 reference data.

Results of the MANOVA for each biotic factor or univariate probability would
indicate if the biotic resource was enhanced significantly, maintained oi
nonsignificant change and if the biotic resource was dejraded significantly. This
determination was made after comparing the mean data for the ironitoring trip and
the l99l reference data. An increase in biomass of the biotic catefories
d_uring monitoring would indicate an enhanced resource. @!@ is
the only biotic factor that is does not enhance the aquatic fooa U"se wittl
increasing biomass, therefore reduced Oscillatoria 6io-arr over lggl
reference data would be an enhanced resource.
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Objective L:

RESULTS

Monitor the effects of modified low fluctuating
flows from Glen Canyon l)am (GCD) on the
benthic community in the Colorado River between
Glen Canyon Dam and Diamond Creek.

June 2000 water quality monitoring of the Colorado River below GCD is within the
typical seasonal ranges for conductivity, pH and dissolved oxygen. River temperature
increased from 10.'1" to 18.8"C at Darnond Creek as a result of the steady 8,000
flows. We have insufficient baseline data to determine if nutrient concenirations are
within typical ranges.

fl"9 2000 Primary producer biomass estimates indicated high variability in
ClqdoPhora and MAMB categories (Iable 2). With a system wide increase in MAMB
and decrease in Cladophora. Oscillatoria decreased in biomass while detritus
increased

Macroinvertebrate mass estimates were greater than the lgglreference data in June
2000 at RKM 0.8, lres Fetry cobble bar and 98.6 RKM 3.1, just above the LCR. All
other macroinvertebrate estimates are equal to 1991 data at those sites.

Macroinvertebrate composition and biomass was skewed by a large increase in snail
number in Glen and Marble Canyons These patterns are very similar to those of
l99l; low benthic biomass and taxa richness with high variability.

Comparing June lgglbenthic biomass estimates to the L:99lreference data showed the
biotic !_atggories to either be maintained or enhanced (fable 3). This collection trip
generally had the highest biomass estimates documented through the study site and-
macroinvertebrate biomass was enhanced at all cobble sites. We can attribute this
pattern to consistent flows with littte daily fluctuations and possibly a result of clear
water conditions from scour after the 1996 Spike Flow. These results indicate that if
during normal dam operations, including management or research flow scenerios, the
biotic factors comprising the food base were degraded at enough to warrant
remediation then we recommend steady flows of at least 4{n m3.s-1 for several
months.



Table 2 Comparison of benthic biomass frcm 1991 reference data to monitoring data collected from
June 1999 and June 2O00 at nine sites in the Colorado River through Grand Caiyon. Results of
IVIANOVA 1ry {epicted as follows for each bro-tig.factoc (+) resouie enhanced ripin*rUy, t=lresource maintained, nonsignificant cha4ge and C) resoririe degraded significantli. 116.""1f2n1;,;"t

1g.T:.lfryphlS and bry-ophyQ * aJploel by uam. H,ot habitits ate iodi"at"a ufF*a-our"
habitatsty C- Oscillatofia is the only biotic-factor that does not enhance the-aquatic food
base with increasing biomass, theiefore a + means reduced Oscillatoria ti"--rrr-""""l99l reference data.

SitelDate Cladophora Oscillaroria il{AMB Macroinvertebrates

June 1999

Rkm O.O P

Rkm O.8 C

Rkm 3,1 C
Rkrn 95.7 P

Rkm 98.6 C
Rkm lOE.8 P

Rkm 109.6 C

Rkm 326.4 P

Rkm 32E.8 C

--

+

--
D-
--
a-
e
a

--

-

+

-
+

+

+

+

+

+

+

+

+

--
=

+

-
+

+

-

+

+

=
+

-
=

+

SitelDate IvIAMBCladophpra Oscillatoria Detrihls Macroinvertebrates

June 2OOO

Rkm O.O P

Rkm O.E C

Rkm 3.1 C
Rkm 95.7 P

Rkm 98.6 C
Rkm 108.8 P

Rkm 109,6 C

Rkm 326.4 P

Rkm 328.8 C

--
+

--
I-
+
e-
--
--
-

+

+

-
+

=

+

+

+

+

=

+

+

+

-
=

+

--
+

+

+

-

--
-
-

-
+
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TaHe 3. Comparison of be,nthic biomass from 1991 rderence data to data ollected in June 1996 at nine
sites in the Colorado River throug[ Grand Canyon. This anelysis demonstrstes how reduced
qaifl flowlluctustions can Enhance the'aquatic food-base. Resultsof IviANOVAare
depicted as follo'ws for each biotic factoc (+) resorrce enhmcod significantly, (=) resouree maintained,
nonsignificant change and (t rcsqrce Aegraaea significantly. Mscellaneoui algag maclophytes and

lryo-p_hytes Sre deprcted by lvlAMB. Poofhabitats-are indicited by P and cobblJtabitats bi, e.
9scillatoriq is the only biotic factor that does not enhance the aquatic food base with
increasing biomass, therefore a + means reduced$gjllglgigbiomass over 1991
reference data.

SitelDate Cladophora Qpcillatoria Detritm IVIAMB Macrcinvertebrates

I
t
I
I
t
I
I
I
t
t
I
I

-

--
--
-I
a-
-a
--
a-
-I

--
-I
--
--
--
I-
--
+

--

--
--
+

--
+

--
+

--
+

-

-a
+

--
+

-I
+
I-
-

June 1996
Rkm O.O P

Rkm O.t C

Rkm 3.1 C

Rkm gS.V P

Rkm 9E.6 C

Rkm lOt.E P

Rkm 109.6 C

Rkm 326.4 P

Rkm 32t.E .C

-
+

+

-
+

-
+

--
+

Objective 2z Monitor the effects of modified low fluctuating
flows from GCD on the organic drift in the Colorado
River between GCD and Diamond Creek.

Organic drift in the Colorado River below Glen Canyon Dam reflects both the
prodqc!,vity of the benthos and scouring effects of daily fluctuating flows (Shannon et
al. l9%; A202-A320). In June 2000 CPOM drift was very similar to June 1999,
even though the flows wer€ steady 8,000 cfs. These were not high estimates and
maybe because of the spring 30;000 cfs "spike" as prt of the ruri*", low flow
experiment, scouring the benthos.

15
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IObjective 3. Assess the benthos and drift of major tributaries in

Grand Canyon National Park.

We collected in January 1999 and 2frX). This dataset will be analyzed with the
summary report all tributary data collected during the past 20 years. This report is
scheduled for completion in December 2fi)1.

Objective 4. Construction of an aquaticlriparian food web
using stable isotope analysis.

Due to the spatial variability in 013C throughout the study area we constructed a
'nsectioned food web" for Colorado River below GCD (Fig. 1). By sectioned we mean
the food web is divided into two regions depicting 6l3C *a SrsX-data within the first
100 km and >100 km down stream from Cen. T[ese distances were selected to be
above and below the Little Colorado River which has the greatest drainage area of all
Grafrd Canyon tributaries (69J90 kmz)

Values for 0l3C revealed the variability in carbon source for the two regions of the
sectioned food web (Fig. l). Aquatic macrophyte and herbaceous ripariin vegetation
013C values were more enriched than algae,-1.2 and2.3 Voo, respectively, in ti'". tOO
km food web. W_oody riparian vegetation 0l3C was enriched 3.5 7- in comparison to
algag 

"t9 pt*ably contributed little to the < 100 km food web. Algal 6l3idata are
sectioned by S.wu between the two regions and macroinvertebrates by Z.7%*,with the
{"y1 $vel region more enriched. Thia sectioned food web (Fig. 1) i; not rhe
definitive food web for the entire study site, but is meant to d-epi-ct two possible carbon
path-ways and trophic positions by region. Therefore inclusiott or exclusion of sites
for specific-args 9f S" study site, such as the critical habitat reach for humpback
chub near the Little Colorado River, need to be statistcally evaluated before
conclusions can be drawn about the food web of that reacir.

ftgltti: position of fish was significantly (p<0.01) and positively related to size class,
indicating a change in fecding behavior between size classes for all fish taxa (Fig. 2).
6tsN values luggested that smaller size classes fed upon aquatic macroinvertebrates
while lutffl fish were predaceous as indicated by aiV* dipletion across all four size
classes. This relationship 01sN depletion held for all species of fish collected (f=0.1;
n=144; p=0-8) f9,r example, the native speckled dace-(Rhiqiebtlygosculus) reached a
maximumsizewithinthe50-99mmsizeclassandth"refo@with
young-of-the-year fish in other larger fish taxa. Humpback chub 6l3C and 6l5N data
from muscle plugs and fin clips did not differ signficantly so were combined for
analysis (n=27; p=0.4). McCarthy and Waldron 2000 alJo reported that.adipose fin

I
I
I
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I
I
I
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and white muscle 6l3C and 6l5N measurement were statistically insignificant for the
brown trout, Salmo trutta.
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Figure 1. Dual isotope plot (OtsC and 6l5N) for the sectioned food web of the
Colorado River through Grand Canyon National Park. The center of each box is the
average 0l3C and 6l5N value and box size represents the standard error. Clear boxes
indicate data collected in the upper 100 km, or sites la Gig. 1). Grey boxes indicate
data collected from sites in the lpwerlOO km, or sites 5-7 (Fig. 1). Fish data represent
two size classes; 1= 50-149 mm and 2 = 150-250 mm.
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$gut" 2. Fish size class and average ElsN values (*d) from eight fish taxa collected
from Colomdo River below Glen Canyon Dam. Letters indicatJ
significant differences between size clisses (p<0.03).
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Objective 5. Preliminary analyses on the use of Cladophora.
Oscillatoria and total plant carbon as indices for
general commnnity health of the regulated Colorado
River below Glen Canyon llam, Arizona.

INTRODUCTION
glomerata serves as a keystone species in the food web in the tailwaters

below Glen Canyon Dam (GCD). Previous studies on the tailwaters below GCD have
repeatedly shown thatC. glomerata is the preferred habitat for the alien
macroinvertebrate assemblage in the regulated river in comparison to other available
habitats including other filamentous algae and cyanobacteria, aquatic bryophytes, and
macrophytes (Blinn and Cole,199I, Blinn et al. 1992, Angradi 1994, Shannon et al.
1994, Shaver et al. lW7, Stevens et al. lgn,Ayers and McKinney 1998, Benenati
1998, Shannon et al. 1998, Benenati et aI.2000). The highly branched filaments of C.
glomerata provide a large surface area for the colonization of epiphytes as well as
habitat for invertebrate reproduction and a refugium from predators (Stevenson and
Stoermer lg&z,Irskinen and Hallfors 1990, Dodds and Gudder 199t2, Hardwick et al.
1992, Blinn et al. 1998).

I Due to the critical role of !,. glornerata in the food web of the regulated Colorado
River below GCD (see Blinn et al. 2000), we propose that this green filarnentous alga
be considered as a potential index for community health in the Colorado River
throughout Grand Canyon. In order to develop an index, based on C. glomerata ash-
free dry mass (AFDM), we compiled and analyzed phytobenthic data collected from
cobbles from 1991 through 1996 by the Northern Arizona University Aquatic Food
Base Program. The relationships between Q. glomerata and total invertebrate
biomasses and Oscillatpria and total invertebrate biomasses were determined. The
relationship benveen total plant carbon biomass (autochthonous and allochthonous) and
invertebrate biomass was also examined.

METHODS
Collections: The data presented in this report result from 6 years of effort between
l99l and 1996 by the Northern Arizona University Aquatic Food Base Project (Blinn
et al. 1992, Blinn et al. 1993, Blinn et al. 1994, Blinn et al. 1995a, Shannon et al.
1996, Shannon et al. 19tn). The data set contained 1,122 data points starting in
January 1991 and continued through 1996. Although this project has had various
objectives over the last decade, many of the sampling sites and methodologies have
remained constant throughout. The data used for these analyses have been taken from
the data base and represent common sites and cornmon collecting methods throughout
the period, although there may not be an even representation of sites or an even
number of sample periods among years.
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Between 1 and 6 sample raft triqs w€re made down the Colorado River each year.
The number of t{Pt pgt year reflected the available funding for food base research
an$ tle projec! objectives at the time. A summary of the nimber of trips for each
calendar year is given in Table 1. Samples were ak"n from cobble bars at ll
different sites between hes F"try @Kb) and Diamond Creek (RK 360). Sites were
!."4"9 -"1oog 

the length of the river to determine the influence of Oirt"n"e from GCD
(RK -26.0) and the influence of tributaries on the aquatic benthos. A list of sample
sites and locations is given in Table 2.

Alt samples were taken with a modified Hess substrate sampler on cobble substrates.
Samples lv-ere collected by stining the benthos with 

" 
*"t"i trowel for 30 s. Benthos

dislodged from the substrate was flushed into the collection net portion of the-sarnpler
and transferred to plastic containers for further processing. Samples were taken from
the permanently wetted area of the cobble bar as opposedio ttt" varial zone which is
gubjecl to reg-ular de-watering due to fluctuating flows from GCD. hevious studies
have shown that the varial zone has a different Lnthic community composition andIjpt"d standing_mass compared to the pennanently wetted area 1blim'"t 

"1. 
ig95b,

Shaver et al- lgyT,Benenati et al. 1993). The cobLle bar at eactrsite was divided into
3 transects apProTimately 

1O p apaft. 'iwo randomly spaced samples *"ttt"r."n ui
each transect to give a total of 6 samples for each siti. Collections in l99l have only
3 samples per cobble bar since haffthe samples were used for taxono*i" p,rrpor"-
during that period.

All samples were sorted within 48 h of collection. Samples were originally sorted
into l1 different biotic gategones_ as described by Blinn^et al. (1995bi. Sainples were
dried to a constant wgght ai @"C then weighed and ashed for I h at 300"C tb estimate
ash-free dry mass (AFDM). During the la6r part of the study, AFDM was estimared
from dry weight using regression equations for each benthictategory. For the
purpose of these analyses, the original 1l categories were reduced-to 4 broad
categories: total macroinvertebraies, Q,. glomeiata. Oscillatoria spp. crust,and detritus.
Some analyses colP{e9 total primary "*b* t" "th"r 

*t%rti"r. fotut primary
gTbn is composed of all algae and aitritat categories in the"phytobenthic-comnrunity.
All analyses are based on AFDM m-2 standing niass of each i^tigory.

Statistical methods: Y" -ut"d logistic linear regressions to test the hypothesis that
specific categories 9f3rirygry carbon (!'. glorierata. Oscitlatoria rpi., detritus, total
carbon' or a ratio of Qsgillalgdiastanding mass to e. gl"-"*t" $drittng mass)'would
be good predictors of invertebrate standiig mass in the Colorado River] Regression
models were tested yit! one predictor at a-time rather than in multiple regrJssion
models since the objective of this research is to provide information that ,iitt ttrtp
simplify field collection and processing methods rather than build predictive models
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from multiple predictors. Each Hess sample represents a single sample and no attempt
has been rnade to look at relationships within a specific site, dthough the relationship
of primary carbon at the Ires Fery site was compared to the relationship at all other
sites to determine the effect of constantly clear water with sites subject to occasional
high suspended sediment concentrations.

All data were transformed using a 4th root transformation to improve homoscedascity
(Sokal and Rolf, 1992). Data were further refined by removing all samples with '0'
values for predictor values. For each analysis we attempted to improve the fit of the
linear equation by removing outliers from the analysis. Outlier points were identified
using a Cooks-D coefficient (Sokal and Rolf, 1992). Data wene analyzed using JMP
IN@ Ver.3.2.l statistical software (SAS Institute, 1989).

RESULTS AND DISCUSSION

Our preliminary analyses indicated thate glomerata has a strong potential of serving
as a functional index for communify health in the regulated Colorado River below
GCD. This is based on the strong positive relationship between $, glomerata AFDM
and total invertebrate AFDM (R2 = 0.415, gd.001) in the tailwaters of GCD (Fig.
1). Therefore, since invertebrates make up a large proportion of the diet of native
and nonnative fish (Valdezand Ryel 1995, McKinney and Persons 1999) in the
tailwaters of GCD, this index should provide good insight into the overall health of
the Colorado River system. In fact, the relationship between C. glAne&taand
invertebrate biornass was slightly stronger (Rz - 0.390"9d.001) than that for total
carbon (all algae, detritus, and other plant material) in the regulated Colorado River
(Fie. 2).

In contrast, there was no relationship benveen OggillAtgdaspp. AFDM, and total
invertebrate AFDM (R2 = 0.009; Fig. 3). This is not surprising since QsCillAEdA spp.
only become numerically important in the regulated Colorado River in highly stressed
regions of the tailwaters such as those habitas in high yarial zones and under
conditions of high suspended sediment (Shaver et al. 1997, Benenati et al. 1998).
Furthermore, g. glomerata communities contribute an order of magnitude more
potential energy to the ecosystem than Oscillatoria spp. mats (Shaver et al. 1997).

In addition to our original scope of work, we are attempting to link food base
variables (primary carbon and invertebrates) to the next highest trophic level (fish).
Arizona Game and Fish Department (AGFD) maintains a large data base from the
hes Ferry trout management program that spans the same time frame as the food
base data. We believe that the-AGItD trout fishery data represent the most complete
data set with a common method throughout any of the Grand Canyon fisheries
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resgalch projects. As such, it represents our best opportunity to link food resources
to fisheries with an existing data-set. We are 

"oop"oting 
wiih AGFD tfttougft O"",

lpeas and Bill Persons to acquire and correlate thlse data with food base daia. To
date, NAU is in receipt of a mean data set for Lees_Ferry trout from l99l thiougtr
1998. Initial attempts have been made to correlate food stanOing mass and fish
condition (Kn) or catch per unit effort (CPUE). These methods-need to be refined
a1{ are problematical given the location and timing of the two sampling regim;;. W"will continue to analyze these data in cooperation iith AGFD in the ufio;id V*r.
Other workers have found a strong relationship between organic carbon standing crop
and invertebrate abundance, biomass, and production in strJams (Watlace et al. ig99i
Filbert and Haw$nt (L?5) rgpo{9d a strong relationship benyeen drifring mass of
invertebrates and condition of rainbow trouiin the Green River, *yomini- ln fact,
Wallace and Webster (1996) proposed that "effective fisheries *"g"-"ni;il---
account for fish-invertebrate linliages and macroinvertebrate linkagJs with resources
and habitats".

These same relationships-apply to linkages between algae and terrestrial plant carbon
f:ss (standlng organic plant carbon) and macroinvertEbrates (Winterbourn 1990).
Therefore, from a bottom-up perspective, it may be feasible to use 

"itt*t C.glomerata mass 
"$/gt 

standing carbon mass as a simple, but functional-inTex, for
ecosystem health in the regulated Colorado River. ScireOuteO collections of plant
organic carbon q"y b"-iTplemented into the long-term monitoring ptogotn to
determine general condition of the Colorado Rivi community be6; Get.
We plan to refine the C. glomerata total plant carbon community index over the next
six months- Our goal is to try to determine relationships beffie; fistr bi,omas 

"na7otdensity witfr C. glomerata and/or total plant carbon biomass. Results from these
analyses will be presented in the final ieport.
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Figure 1. Relationship between Cladophora glomerata biomass and
total invertebrate biomass in the Colorado River below
Glen Canyon Dam, AZ.
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and total invertebrate biomass in the Colorado River
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Figure M. pH collected at lz7 Mile Rkm zoz9 from
October 1997 to June 2000.
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Figure 45. Dissolved oxygen (mgll) collected at 127
Mile Rkm 202.9 from October 1997 to June 2000.
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Figure 47. Ammonia (NH 3rm$L) collected at ln Mile
Rlon ?02.9 from October 1997 to June 2000. Samples
below detectable levels are rcpresented by a (*). -
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Figure 69. Gastropod densities (#/m sq) collected at Ires
Ferry cobble Rkm 0.8 from August 1992 to June 2000. Error
bars represent ( + I SE, n=6).
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Figure 125. Oligochaeta densities (#lmsq) collected at 205
Mile Rapid cobble Rkm 202.9 from August 1992 to June 2000.
Error bars represent ( + I SE, n=6). .
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2000. Error bars represent ( + I SE, n=12).
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Canyon pool Rkm 108.8 from August 1992 to June 2000.
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Figure 187. Chironomid densities (#/m sq) collected at
Middle Granite Gorge pool Rkm 203.2from October l9g7 to
June 2000. Error bars represent ( + I SE, n=12).
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Figure 216. Average CPOM drift mass (g AFDlWcms ) for
Gammarus collected at Lees Ferry Rkm 0.0 from September
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Figure 234. Average CPOM drift mass (g AFDlWcms) for
detritus collected at the Gauge above LCR Rkm 98.4 from
March 1995 to June 2000. Error Bars represent ( t I SE).

Ai234



A(a
AFIFI(J\
---.Rh

a0v
G'L
(l)
TJg
rFl

R

0.w22

0.002

0.0018

0.m16

0.0014

0.0012

0.001

0,0m9

0.(xx)6

0.0m4

0.(x)02

0
e(')\0c(')\coF{OeF{eCF{\Of-Ff€€€o\ o\ o\ ('\ o\ o\ o\

(f)elt)
o\

etf)\Oreera \o \oo\ o\ g\

(q \0 \{)eecO\g\eg\g\C-l

Figrre 235. Average CPOM drift mass (g AFDIWcms) for
aquatic diptera collected at the Gauge above IICR Rkm 98.4
from March 1995 to June 2000. Error Bars represent ( + 1

SE).

A235



0.0001

A,(n
a
FI
FI
cJ\\

FTa
R
FE{

a0\/

H 5E-05
u)

0l
5lf{l
cl
trl
Ftl
trlxl
csl

et

\9O(f)\t)\oeFeeeeO€o\s\€€\ g\ €\ g\ Gr

F=8538r=8!oto\9F\eFFii-€\o\o\66-\o\o\6

1995-2m0
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Figure 241. Average CPOM drift densities (#/cms) for
miscellaneous macroinvertebrates (MM) collected at Gauge
above LCR Rkm 98.4 from March 1995 to June 2000. Error
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Figure 242. Average CPOM drift mass (g AFDIWcms) for
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September 1993 to June 2000. Error Bars represent-( t I SE).
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Figure 248. Average CPOM drift densities (#/cms) for
Simuliids collected at Tanner cobble Rkm l(D.6 from
September 1993 to June 2000. Error Bars represent ( + 1 SE).
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collected at 127 Mile rapid Rkm 202.9 from September 1993
to June 2000. Error Bars represent ( + I SE).

t
I
t
I
I
I

A253



./\(a
aFI
EI^.t

-ah
a0\r'
u)t-*J.-
L.

{r)
(l)

a

e(r)\Oetv)
-Oe--O\gt\f-Fr.€o\ o\ o\ o\ g\

Fs?9t!)erl\oeeQe-€-SS=nrrl€Eo\g\o\o\9\66
o(f)\o\aF{eee€(t\o\og\o\€\r|

1993-20i0f'.

Figure 254. Avenge CPOM drift mass (g AFDIWcms) for
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Figure 255. Average CPOM drift mass (g AFDlWcms ) for
aquatic diptera collected at 127 Mile rapid Rkm 202.9 from
September 1993 to June 2000. Error Bars represent ( t I SE).
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October 1995 to June 2000.

\9e(v)\gOtrl\Oet*)\g\gQ-reOreerOeO\9\gf-FF66€46€g\ g\ 9\ o\ o\ g\ g\ o\ o\ g\ Fl

A297



,Aa
A
F
E
CJ\\

:fF\/
{r).-a-H
(t)

R
16.-
o()

.l
'F)I
Gg
f{
G'
FI
Fr{

10

\ceo
GT

I
I
I
I
I

I
I
I
I
I

I
I
T

I
I
IeF)\O

-ee|ff .\O \gCt\ O\ 6

1995-2(X)0

Figure 298. Average FPOM drift densities (#/cms) of
Harpacticoids collected at Guage Above LCR Rkm g8.4
from October 1995 to June 2000.

=35=8==8s\9 I-f!-66€66o\g\(t\g\66666

I
I
I

4298



(f)\c)€)rq\o€)(fi\o\0
CedoeF{eCer-FF€€€O\€\E€\ g\ o\ g\ g\ g\ o\ o\ rl

I
F{lo.o\

.,-\,0a|rx
q)

:*F
\1

{rl.l(a
ax
(l)

R
Gt,L{,
€)r()
o€
cg

-U

I
T

I
I
l/

{

r1
li
t
t
I
I
I
I
I
I
t
I
I
t

\oe
OF{\o \0g\ g\

1995-2000

Figure 297. Avenge FPOM drift densities (#/cms) of
Calanoids collected at Guage Above LCR Rkm 98.4 from
October 1995 to June 2000. ,, ';'.,:,t

A299



=88e8=e8=e8588HHr55sRg8AAR

,^,
rt)
FIFIts
CJt--

..>
-r--F

Y
{r)
o-
0aFI
(1)

a
rEl
o9
CTt{.lr)
u)
o

I
t
I
I
I
T

I
I
I
T

t
t
t
I
I
I
I
I
I

r995-2000

Figure 300. Average FPOM drift densities (#/cms) of
Ostracods collected at Guage Above LCR Rkm 98.4 from
October 1995 to June 2000.

A300



,A(a
a
FTFI
(J

-t:tFr> 600

TJo-(a
tr
(l)
,atr(
g
o

TJ
,l(AH
GI

-g
oo
N

o
CJ
u).rlt{
>

I
I
I
I
I
I
I
I
I
t
I
I
I
I
I
I
I
I
I

\0eet\
9ec)\0e(?|\o
=-ee,rrOe\P\9t-rr€€g\€\€\g\o\66

e
F{
lf?
€\

e(f)\OF{ee€g\o\g\ o\ g\

(f)e\og\

t.995-2(X)0

Figue 301. Average FPOM drift densities (#/cms) of
miscellaneous zooplankton (benthic origin) collected at
Guage Above LCR Rkm 98.4 from October 1995 to June
2000.

A301



I
I
I
I
I
t
I
I
I
I
I
I
I
t
I
I
I
I
I

e(f)\o\oF(eee€(t\€\eo\o\o\t\l

(De!)E)et!}\9etf)\o
-rCQEe6=o-!r)\9\99FFi---g\o\o\64\a\a\66

.r-,
ca
aFIl{I\

R
FE{

a0
\r/

a-o
{rf

'l(aH
c!

-lg
oo
N

0.00175

0.0015

0.00125

0.001

0.00075

0.(x)05

0.fi)025

1995-2000

Figure 302. Average zoopla4kton biomass (g AFDIWcms) of
lentic origin for Calanoida, Cyclopoida, Cladocera and
Ostracoda collected at Gauge Above LCR Rlan 98.4 from
October 1995 to June 2000.

A302



A,
caaFIFI
e,

Ztr-

R
fE{

a0\/
aEo

{J
,l(-H
G
-g
oo
N

o
I
ct)

:!'!
-F-!

0.002

0.0015

0.001

0.(x)05

eta\oFOElt) \0 \0g\ g\ o\

199s-2tn0

'
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Figure 304. Average FPOM drift densities (#/cms) of
Calanoids collected at Tanner Cobble Rkm 109.6 from
October 1995 to June 2000.
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collected at 127 Mile Rapid Rkm 2029 from March 1998 to June
2000.
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June 2000.
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Figure 321. Average FPOM drift densities (#/cms) of
Cyclopoids at 205 Mile Rapid Rkm 328.8 from October 1995 to
June 2000
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Figrne 322. Average FPOM drift densiries 1g7sms) of
Harpacticoids at 205 Mile Rapid Rkm 328.8 from october 1995
to June 2000.

4322



Aa-FIE(J\\
:tF\/
*j..-
CN
ax
(1)

R
c!
L.
€)Io€
E€

-lU

I
I
t
I
T

I
I
I
I

cf)\oorq\co(a\oc(!)\99rce-oo-ecoc)€'ff) \O \O \O F F F 6 cP A O\ g\ e€t\ o\ o\ g\ ct\ g\ o\ o\ g\ o\ g\ €t\ Gl

I
I
I
I
I
I
I
t
I
I

r99s-2000

Figure 323. Avenge FPOM drift densities (#/cmti of
Cladocera at205 Mile Rapid Rkm 328.8 from October 1995 to
June 2000.
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Figure 324. Average FPOM drift densities (#/cms) of
ostracods at 205 Mite Rapid Rkm 328.8 from october 1995 to
June 2000.
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Figure 325. Average FPOM drift densities (#/cms) of
miscellaneous zooplanlcon (benthic origin) at205 Mile Rapid
Rlqn 328.8 from October 1995 to June 2000.
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Figure 326. Avenge zooplankton biomass (g AFDIWcms) of
lntic origin for Calanoida, Cyclopoid4 Cladocera and
Ostracoda collected at2}5 Mile Rapid Rkm 328.8rfiom ,

October 1995 to June 2000.
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Figure 327. Average miscellaneous zooplankton biomass
(g AFDIWcms) of benthic origin collected at205 Mile Rapid
Rkm 328.8 from October 1995 to June 20m.
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fable^lA. .Comparison of benthic bionrass from 1991 reference data to monitoring data collected
l-rom Octoter 1998, March 1999 and June 1999 at nine sites in the Colorado RivEr through &and
C-anyon. 

-Rgt ttlt of MANOVA are depicted as follows for each biotic factor; (+) resourcj
enhanrced significantl-y, (=) resource maintained, nonsignificant change and (-inesource degraded
significantly- Mscellaneous 4g"9, macrophytes and f,ryophyrcs areiepictea'Uy MAMB. ?ool
habitats are indicated by P 11d coUUte habjtais by C. Oiciilitoria is tihe onl! biotic factor
that does not enhance_the aquatic food base tmEcreasing biomiss, therefore a
+ means reducedQseillatoria biomass over l99l reference?ata.

Site/Date Cladoohora Oscillatmia Detih$ I,IAMB tvlacroinvefiebrafes

October l99t
Rkm O.O P

RkmO.tC = = = =
Rkm3.lC = = = =
Rkm95.7P = = =
Rkm9t.6C = = =
RkmlOE.tP = = = =
RkmlO9.6C = + = =
Rkm326.4P = + + =
Rkm 32t.E C =

--
I-

--
-
--
--
-- I

IMarch 1999

Rkm O.O P

Rkm 0.8 C
Rkm 3.1 C

Rkm 95'-7 P

Rkm 98.6 C

Rkm 108,8 P

Rkm 109,6 C

Rkm 326.4 P

Rkm 32E.8 C

--
--
--
--
+

--
--
--
-

--
+

+

--

--

--
I-
--
--
-
--

+

--

-
+

+

+

-
-
+

I

Table 1A continued



Sitf/Date Cladophora Oscillatoria tvIAMB Macroinvertebrates

I
t
I
I
I
I
I
I
I

June 1999

Rkm O.O P

Rkm O.E C

Rkm 3.1 C

Rkm 95,7 P

Rkm 9E.6 C

Rkm LOE.t P

Rkm 109,6 C

Rkm 326.4 P

Rkm 32E.8 C

a

+

I-
--
--
--
--
--

-

+

F'-
I

e

+

+

T
I

I-

=

+

+

+

+

+

-I
+

I
I

+

--
=

+

--
+

+
I-

+

+

T-
+

--
--
+
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