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Molecular Evidence for a Unique Evolutionary
Lineage of Endangered Sonoran Desert Fish
(Genus Poeciliopsis)

JOSEPH M. QUATTRO,*t PAUL L. LEBERG,*§ MICHAEL E. DOUGLAS,t
AND ROBERT C. VRIJENHOEK*

*Center for Theoretical and Applied Genetics, Rutgers University, New Brunswick, NJ 80903, U.S.A.
tDepartment of Zoology, Arizona State University, Tempe, AZ 85287, U.S.A.

Abstract: Efforts to restore an endangered species in its former range should be based on a sound under-
standing of evolutionary relationships among remaining natural populations. In this study mitochondrial
(mt) DNA diversity within and among Gila River drainage populations of the endangered Sonoran topmin-
now (Poeciliopsis occidentalis) in Arizona was compared to that from neighboring populations in Sonora,
Mexico, where the species remains locally abundant. No mtDNA diversity was detected within or among sam-
Dples from the Gila River basin in Arizona. But considerable variation was found within and among popula-
tions from several river systems in Sonora. Examination of mtDNA from a population that inbabits the upper
reaches of the Rio Yaqui in soutbeastern Arizona revealed substantial divergence between it and all other
populations examined. We comment on the implications of this divergent population for topminnow man-
agement in Arizona and argue for more-detailed genetic and morphological studies to determine the distribu-
tional limits and specific status of this bighly divergent form.

Evidencia molecular de un linaje evolutivo Unico para peces en peligro de extincién (Genero Poeciliopsis) del
Desierto de Sonora

Resumen: Los esfuerzos para restaurar una especie en peligro a su antigua drea de distribucion debe
basarse en una comprension apropiada de las relaciones evolutivas entre las poblaciones naturales rema-
nentes. En este estudio, se comparo la diversidad de ADN mitocondrial dentro y entre poblaciones en peligro
de Poeciliopsis occidentalis, gue babita las corrientes del rio Gila en Arizona, con la diversidad de poblaciones
vecinas de Sonora (Mexico) donde la especie es todavia abundante. No se detecto diversidad alguna de ADN
mitocondrial dentro o entre muestras de la cuenca del rio Gila en Arizona. Sin embargo, se encontro una
variacion considerable dentro y entre poblaciones de varios sistemas de rios en Sonora. El analisis de ADN
mitocondrial de poblaciones que babitan los cauces superiores del rio Yaqui en el sudeste de Arizona revelo
una divergencia substancial entre esta poblacion y todas las otras poblaciones examinadas. Discutimos las
implicaciones de esta poblacién divergente para el manejo del “topminnow” en Arizona y remarcamos la
necesidad de estudios genéticos y morfolégicos mds detallados con la finalidad de determinar los limites del
drea de distribucion y el estado especifico de esta forma altamente divergente.
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Introduction

The Sonoran topminnow, Poeciliopsis occidentalis, was
once the most abundant fish in the Gila River drainage
of Arizona (Hubbs & Miller 1941). Currently, it persists
there as a handful of fragmented populations represent-
ing a small portion of its former range (Minckley et al.
1977). The species remains abundant throughout most
of its former range in Sonora, Mexico (Hendrickson &
Juarez 1990). Population decline in Arizona has been
dramatic, resulting in the addition of P. occidentalis to
the federal endangered species list in 1973 (U.S. Depart-
ment of the Interior 1980). The topminnow suffers from
severe contractions of its former range due primarily to
desiccation of habitat, stream canalization and impound-
ment, and the introduction of exotic species, particu-
larly the western mosquitofish, Gambusia affinis (Minck-
ley & Deacon 1968, 1991; Meffe et al. 1983; Hendrickson
& Minckley 1984). Efforts to prevent the extinction of
topminnows in Arizona have focused on restoring the
Gila topminnow (subspecies P. 0. occidentalis) through-
out its former range (Simons et al. 1989). Elimination of
mosquitofish from habitats harboring remnant topmin-
now populations and the reclamation of suitable habi-
tats by regulating ground-water usage are also planned
but have rarely been implemented (Simons et al. 1989).
Preservation of a second subspecies in Arizona (P. 0. so-
noriensis, the Yaqui topminnow) has benefited from
the establishment and management of the San Bernar-
dino National Wildlife Refuge (NWR) in southeastern Ar-
izona.

Knowledge of the genetic structure of remnant popu-
lations of an endangered species should play an integral
role in any comprehensive recovery effort. But efforts to
restore P. occidentalis in Arizona were undertaken be-
fore a genetic survey of the species was completed. Sub-
sequently, a study of allozyme variation in natural popu-
lations from Arizona and the neighboring state of
Sonora, Mexico, identified three genetically distinct lin-
eages (Vrijenhoek et al. 1985). Group I comprised all
populations from the Gila drainage in Arizona (Fig. 1)
and the Rios Sonora and de la Concepcién in Sonora
(Fig. 1a). Group II comprised topminnows from the Rio
Yaqui (including P. o. sonoriensis from the San Berna-
dino National Wildlife Reserve in Arizona), the Rio
Matape, and the lower Rio Mayo. Group III comprised
isolated populations of P. occidentalis from the upper
stretches of the Rio Mayo (Fig. 1a).

Compared to topminnows in Mexico, Arizona popula-
tions harbored little allozyme diversity (Vrijenhoek et al.
1985). In particular, the Monkey Spring topminnow
population (site MS; Fig. 1b) had no detectable genetic
diversity, although this population provided the stock
for most of the re-introductions made to that time. Sub-
sequently, it was learned that the Monkey Spring top-
minnows have lower fecundity, growth rate, and survival
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than topminnows from populations that exhibit measur-
able genetic diversity (Meffe 1985; Quattro & Vrijenhoek
1989). Following recommendations outlined in Vrijen-
hoek et al. (1985), a new stock from a genetically vari-
able and more phenotypically robust population, Sharp
Spring (site SS; Fig. 1b), has replaced the Monkey Spring
stock for future re-introductions within the Gila drain-
age (Simons et al. 1989).

Some differences in allozyme frequencies exist among
Group I topminnow populations in Arizona, but differ-
entiation among Group I populations is minor compared
to the differences among the three major groups (% rijen-
hoek et al. 1985). Several authors suggested that labora-
tory experiments should be conducted to test the vigor
of offspring from crosses between different Group 1
populations from Arizona (Vrijenhoek et al. 1985; Meffe
& Vrijenhoek 1988; Quattro & Vrijenhoek 1989). They
argued that recent anthropogenic factors were most
likely responsible for severing opportunities for gene
flow among populations within the Gila drainage. Thus,
it may be appropriate to mix Group I stocks if interpop-
ulation hybrids and their descendants have a greater ca-
pacity for surviving in and adapting to reclaimed habi-
tats. Simons et al. (1989) proposed an alternative strategy
that would avoid genetic exchange among topminnow
populations inhabiting four segments of the Gila River,
thus preserving any significant but as yet undetected
remnant genetic variation that may exist in these popu-
lations. The choice of these alternative plans rests on the
nature of the genetic differences among local topmin-
now populations. If regional differentiation is due to re-
cent isolation and population bottlenecks resulting from
human activities, stock admixture might be an appropri-
ate management strategy. But if regional differentiation
is a result of natural selection and historical restrictions
to gene flow, then mixing of stocks may lead to the loss
of unique evolutionary lineages.

We conducted a restriction fragment analysis of mito-
chondrial DNA (mtDNA) to investigate patterns of ge-
netic diversity within and divergence among popula-
tions of P. occidentalis from Arizona and Sonora. First,
we used the mtDNA data to evaluate the hypothesis that
the isolated populations of P. 0. occidentalis in the Gila
River represent unique evolutionary lineages. Second,
we used this genetic data to compare the isolated popu-
lation of P. o. sonoriensis from southeastern Arizona
with other Group II populations from downstream por-
tions of the Rio Yaqui in Sonora. Finally, we comment
on the management of these taxa in light of the present
genetic results.

Materials and Methods

We analyzed mtDNA restriction site variation among 59
P. occidentalis representing all river systems within
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Figure 1. Sampling locations of P. occidentalis within Sonora, Mexico, and the Rio Yaqui drainage, Arizona (A),
and a detailed view of the southcentral Arizona area showing sampling locations within the Gila river drainage
(B). Collection locale abbreviations are identified in Table 2.

their present range in Arizona and Sonora (Fig. 1). We
include published mtDNA data from 15 specimens of P.
occidentalis collected in Sonora (Quattro et al. 1992).
Mitochondrial DNA was isolated from fresh tissues fol-
lowing the methods of Lansman et al. (1981). Purified
mtDNAs were digested with 16 restriction endonu-
cleases with five (Aval, Avall, Hincll) and six (BamHI,
Bcl, Bgll, Bglll, BstEIl, EcoRl, Hindlll, Ndel, Pst1, Pvull,
Spel, Stul, Xbal) base-recognition sequences. Fragments
were end-labeled with [*>S]dNTPs and separated in 0.8-
1.2% agarose gels. After electrophoresis, gels were dried
under vacuum onto filter paper backings and exposed to
X-ray film for 24-72 hours.

We gave an arbitrary letter code to each restriction di-
gest profile for a particular endonuclease. Composite
scores, representing a letter code for each of 16 gel-frag-
ment profiles, were assigned to each individual. Because
we could interpret all gelfragment profiles as specific
site gains or losses, we constructed a matrix of the pres-
ence or absence of each polymorphic restriction site for
each composite haplotype. We used PAUP (Version
3.0s; Swofford 1991) to construct a phylogenetic hy-
pothesis from this matrix using the principle of maxi-
mum parsimony. We used heuristic searches with 10
random input orders of the data matrix, and we treated

Conservation Biology
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characters as unordered in all analyses. Restriction-site
data from a closely related species, P. lucida (Quattro et
al. 1992), were used to root the phylogeny. The stability
of the branching order of the shortest tree was evaluated
by 100 bootstrap replications.

We estimated the average number of nucleotide sub-
stitutions per site among populations (d) using the max-
imum likelihood method described in Nei and Tajima
(1983). Using MEGA (Kumar et al. 1993), an unrooted
phylogeny based on this pairwise distance matrix was
estimated by the neighbor-joining method (Saitou & Nei
1987). We calculated nucleon diversity (b), a measure of
mtDNA haplotype variability, following Nei and Tajima
(1981).

Results

A previous study revealed 8 mtDNA haplotypes (O.1-
0.8; Table 1) among 15 specimens of P. occidentalis
from the five Mexican river systems (Quattro et al.
1992). To be consistent with that study we retain the
Roman letter O prefix (for occidentalis) and a numerical
code following the decimal to designate each haplotype
in the order of its discovery. Two new mtDNA haplo-
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Table 1. Restriction-site polymorphism in Poeciliopsis occidentalis, expressed as binary characters (1 = present, 0 = absent).

Restriction site*

BamHT Bcll BstEIl EcoRI Pvull Spel Avall Bgll Aval Stul
Haplotype a bc d e fg b ijk Im n o
0.1 1 10 1 1 11 0 000 00 0 1
0.2 1 10 1 1 11 0 001 00 0 1
03 1 00 1 1 11 0 000 00 0 1
04 1 10 0 1 11 1 000 00 0 0
0.5 1 10 0 1 11 1 110 10 0 1
0.6 1 10 0 1 11 1 000 01 0 1
0.7 1 10 0 1 11 1 000 00 0 1
0.8 1 10 0 1 01 1 000 00 0 1
0.9 1 10 0 1 11 1 000 00 1 1
0.10 0 11 0 0 10 1 110 00 0 1

*Although 71 potential restriction sites were assayed in each individual, only polymorpbic sites are shown.

types (0.9 and O.10) were identified among the 59 spec-
imens examined in the present study. Mutational diver-
gence among the 10 haplotypes could be attributed to
base substitutions within 15 polymorphic restriction
sites (Table 1).

The 10 mtDNA haplotypes were not distributed ran-
domly among the six river systems. Haplotypes O.1,
0.2, and O.3 were found primarily in the Rios Mayo,
Yaqui (Moctezuma), and Matape, whereas haplotypes
0.4, 0.6, 0.8, and 0.9 were found exclusively in the
Rios de la Concepcion and Sonora (Table 2). The most
common haplotype surveyed, O.7, was fixed in all eight
Gila River populations and was common in the Rios de
la Concepcién and Sonora. Haplotype O.5 was found
only in the Rio Yaqui at Moctezuma. The most divergent
haplotype sampled, O.10, was fixed in the 12 topmin-
nows sampled from the Black Draw population.

Considering the phylogenetic relationship among the
mtDNA haplotypes, there is a rough concordance be-
tween the present mtDNA data and the allozyme data of
Vrijenhoek et al. (1985). Populations defined as either
Group I (Gila River and Rios Concepcion and Sonora) or
Group II (Rios Matape and Mayo) based on protein elec-
trophoresis are each defined by clades of closely related
mtDNA haplotypes in the genic phylogeny (Fig. 2).
However, a third distinct grouping of mtDNA haplo-
types, undetected in the previous allozyme survey, is ev-
ident in the phylogeny. This “Yaqui” clade comprises
mtDNA haplotypes surveyed from two of seven individ-
uals sampled from the Rio Yaqui at Moctezuma (haplo-
type O.5) and all 12 individuals sampled from Black
Draw (haplotype O.10). These three distinct groups of
haplotypes were found in greater than 80% of the boot-
strap trees (Fig. 2). Overlap between these three major
groups occurred at the Rio Moctezuma locale (electro-
phoretically designated as Group II), which harbored
mtDNA haplotypes associated with individuals repre-
senting Group I (0.7), Group II (O.1), and the Yaqui
clade.

A neighbor-joining tree based on pairwise distances

among populations provides additional support for the
distinctiveness of the three major groups of P. occiden-
talis suggested by the genic phylogeny (Fig. 3). As in the
allozyme survey, Group I includes all populations of top-
minnows from the Gila River and the Rios Concepcion
and Sonora, whereas Group II comprises populations
sampled from the Rios Matape and Mayo. Unlike the
phylogeny constructed from allozyme data, the Black

—~— 0.9 (CO)
" 08 (cO)
f
T 0.7 (Gila, CO, SO, AC)
0.4
Y +O (S0)
L \_ 0.6 (SO)
m
81 N 05 (AC)
\ I
i D 0.10 (BD)
a ¢ e g
%_ 0.2 (MA, AC)
LK 01 (MAMY,AQ)
L\. 03 (MY)
b

Figure 2. Phylogenetic tree summarizing relationships
among observed mtDNA baplotypes in Poeciliopsis oc-
cidentalis. Slasbes represent the number of mutations
necessary to relate individual mtDNA baplotypes, and
lower-case letters refer to specific restriction-site poly-
morphbisms in Table 1. Codes in parentheses summa-
rize the observed distribution of each baplotype. Num-
bers along the branches of the tree represent the
percentage of 100 booltstrap replicates supporting the
particular clade. The tree was rooted using restriction-
site data from a closely related cogener, P. lucida
(Quattro et al. 1992; data not shown).
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Table 2.  Sources of fish specimens, locality codes, and observed
mtDNA haplotypes.

mtDNA  Nucleon

Drainage locality Code n  baplotype diversity
Upper Gila
Middle Spring MI 4 0.7 0.00
Cienega Creek
Cienega Creek CC 5 0.7 0.00
Sonoita Creek
Cottonwood Spring CS 3 0.7 0.00
Monkey Spring MS 5 0.7 0.00
Redrock Canyon RR 3 0.7 0.00
Sonoita Creek SC 3 0.7 0.00
Upper Santa Cruz
Sharp Spring SS 6 0.7 0.00
Sheehy Spring SH 2 0.7 0.00
Ri6 de la Concepcion
La Provedencia Cienega CO 5 0.7 0.52
1 0.8
1 0.9
Ri6 Sonora
Ures SO 1 0.4 0.46
1 0.6
6 0.7
Ri6 Yaqui
Moctezuma AC 2 0.1 0.76
2 0.5
3 0.7
San Bernardino Ranch BD 12 0.10 0.00
Ri6 Matape
San Jose de Pimas MA 3 0.1 0.60
2 0.2
Ri6 Mayo
Navajoa MY 3 0.1 0.50
1 03
Across all populations —_— 8 0.1 0.59
2 0.2
1 0.3
1 0.4
2 0.5
1 0.6
45 0.7
1 0.8
1 0.9
12 0.10

Draw population is highly divergent and does not fall
within the confines of the Group II clade. The Yaqui
(Moctezuma) population is intermediate in its affinity to
any Group I population and the second Yaqui popula-
tion (Black Draw) because its composition of haplotypes
comprises all three major groups.

We estimated nucleon diversity () as a measure of
mtDNA haplotype variability (Table 2). Over all popula-
tions surveyed, nucleon diversity was quite high (b =
0.59), reflecting the mixture of mtDNA haplotypes rep-
resentative of three major topminnow groups. In con-
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trast, however, no detectable mtDNA diversity was
found within any of the Arizona populations examined
(b = 0.0), although considerable mtDNA variability was
found within all Sonoran sites. Nucleon diversity was
highest at the Rio Yaqui (Moctezuma) locality (b =
0.76), where mtDNA haplotypes indicative of topmin-
nows of Groups I and II and the Yaqui clade overlap.

Discussion

We find no support for the hypothesis of long-term ge-
netic isolation among P. o. occidentalis populations in
Arizona because no mtDNA diversity was found within
or among populations of topminnow inhabiting differ-
ent stream segments of the Gila River drainage. This re-
sult parallels the previous allozyme study, which found
low levels of genetic diversity in populations, of P. 0. oc-
cidentalis from Arizona, where the species is endan-
gered, compared with populations from Sonora, where
the species remains abundant (Vrijenhoek et al. 1985).
Although we might explain the lack of mtDNA diversity
within Arizona populations as an artifact of small sample
sizes (n = 2-6 for most populations), all sampled Sono-
ran populations (# = 4-8) contained considerable
mtDNA variability.

The patterns of allozyme and mtDNA diversity are
broadly congruent in that topminnows from the Gila
drainage and the Rios Sonora and de la Concepcién
(Group D represent a distinct evolutionary lineage from
populations inhabiting the Rio Matape and lower Rio
Mayo (Group ID. But there are exceptions to the general
concordance between the two types of genetic data.
First, topminnows from the Moctezuma branch of the
Ri6 Yaqui were assigned to Group II based on allozymes,
but they harbored mtDNA haplotypes indicative of
Groups I and II (Vrijenhoek et al. 1985). Reexamination
of the Distance-Wagner dendrogram summarizing ge-
netic relationships among these populations indicates
that topminnows from the Rio Moctezuma were placed
near the node that separates the branches defining
Groups I and II. The evolutionary relationships among at
least some of these conspecific groups are most likely re-
ticulate as a result of genetic exchange occurring be-
tween the Rios Moctezuma and Sonora via some histori-
cal vicariant event. Admixture between Groups I and II
through stream capture was hypothesized previously by
Vrijenhoek et al. (1985) to explain high genetic diversity
and intermediate allelic frequencies of sites in the Rio
Matape (at San José de Pima) and Rio Sonora (at Ures).
The present geographic distributions of other fish spe-
cies also suggest historical connections between the
Rios Sonora, Matape, and Yaqui (Hendrickson et al.
1980; DeMarias 1991). .

A more significant exception to the general congru-
ence between the allozyme and mtDNA data occurs in
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Gila Group |
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Yaqui (Moctezuma)
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(average number substitutions / site)

comparisons of P. o. sonoriensis from Black Draw to
other P. occidentalis populations in Arizona and Sonora.
Although allozymes distinguished Black Draw P. o. so-
noriensis from Gila River P. o. occidentalis populations,
no unique allozymes differentiated the Black Draw pop-
ulation from downstream Rio Yaqui topminnows in So-
nora (Vrijenhoek et al. 1985). In contrast, the present
mtDNA data show that the Black Draw topminnows dif-
fer substantially from all other topminnows sampled in
Arizona and Sonora. Indeed, this difference far exceeds
that observed in pairwise comparisons between popula-
tions comprising Group I and Group II. Historical isola-
tion of the Black Draw locality from other Rio Yaqui
sites is supported by parallel studies of a morphologi-
cally unique species, Gila purpurea (related to the
broadly distributed G. eremica), that is endemic to the
northernmost reaches of the Rio Yaqui (DeMarias 1991).

Topminnows from San Bernardino Creek, Mexico (con-
tiguous with Black Draw), were described originally as a
distinct species, Girardinus sonoriensis (Girard 1859).
Jordan and Gilbert (1883) considered sonoriensis synon-
ymous to occidentalis. They provide no justification for
this action; but it may have been based on a comment by
Gunther (1866) that the two taxa were identical. Al-
though Cope and Yarrow (1875) listed G. sonoriensis as
a distinct species, most recent taxonomic treatments do
not recognize the specific designation (Rosen & Bailey
1963), with the exception of Miller and Lowe (1964).
Subtle morphological differences between Gila River and
San Bernardino Creek topminnows prompted Minckley
(1969, 1971) to relegate the latter to a separate subspe-

(BlackDraw)
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Group Il
Figure 3. Neighbor-joining phy-
logeny based on pairwise dis-
tances among populations. Al-
though constructed as an
unrooted phylogeny the tree is
drawn with the root placed as
suggested in Fig. 2. Group desig-
nations are as described by al-
lozyme data (see text and
Vrijenboek et al. 1985).

cies, P. occidentalis sonoriensis. Given the striking
mtDNA differences between the Black Draw topmin-
nows and all other P. occidentalis populations sampled,
topminnows in the San Bernardino area represent a
highly unique evolutionary lineage. Little is known
about the genetic composition or abundance of P. occi-
dentalis in the upper Yaqui drainage from San Bernar-
dino to Rio Moctezuma. We suggest that genetic and
morphological studies be undertaken immediately to de-
termine the distributional limits and specific status of
the highly divergent topminnows at Black Draw.

To protect any remnant genetic variation harbored
within the Gila drainage populations of P. 0. occidenta-
lis, Simons et al. (1989) suggested that introductions not
be made between four proposed management areas. Al-
though the Endangered Species Act recognizes geneti-
cally unique populations of vertebrates as evolutionary
units worthy of protection (Waples 1992), the lack of
mtDNA diversity among Gila River populations provides
no evidence for historical isolation among these areas.
This lack of mtDNA variability among Gila River popula-
tions must be interpreted with caution when used as a
measure of differentiation, but the existence of a single
haplotype within all Gila River populations and the shar-
ing of this haplotype in high frequency with Sonoran
Group I populations suggests that all Group I popula-
tions share a common ancestor in recent evolutionary
time. We point out that differences in life-history traits
(Constanz 1979; Meffe 1985) and allozyme frequencies
(Vrijenhoek et al. 1985) have been reported among ex-
tant populations of the Gila topminnow. Conflicting in-
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formation from the ecological and genetic studies and
the present mtDNA data makes it difficult to determine
if these populations should be preserved in isolation or
if gene flow among them should be reestablished.

Given the recent history of population reduction and
isolation during the past 100 years, it seems likely that al-
lozyme and life-history differences among Gila drainage
populations stem from severed opportunities for gene
flow and concomitant population bottlenecks, not from
long-term isolation. Evidence for this bottleneck hypoth-
esis is provided by the higher mtDNA and allozyme di-
versity with Sonoran Group I populations, which have
not experienced the massive range contractions encoun-
tered by topminnow populations in Arizona. This hy-
pothesis notwithstanding, the lack of mtDNA differentia-
tion among Gila drainage populations argues for high
levels of gene flow through interconnections in place
over recent evolutionary time-scales.

If historical corridors for gene-flow have been only re-
cently severed by anthropogenic factors, then the adverse
effects of a loss of genetic diversity in small, subdivided
topminnow populations could potentially be reversed
by small-scale introductions among previously contigu-
ous populations (Meffe & Vrijenhoek 1988). Indeed, the
recency of historical interconnection among Group I
topminnow populations reflected in the lack of signifi-
cant among-population mtDNA differentiation, supports
the concept that such transplantations would not prompt
an unnatural union of highly divergent evolutionary lin-
eages. It has been shown that inbreeding can have large
effects on processes related to population viability, such
as population growth rate (Leberg 1990). However, the
restoration of genetic variability in a homozygous, founder
population of a related species, Poeciliopsis monacha,
had manifold effects on fitness, increasing competitive
abilities (Vrijenhoek 1989) and resistance to parasites
(Lively et al. 1990). In a recent experiment with Droso-
pbila melanogaster, introduction of a single migrant in-
dividual into inbred lines had the dramatic effect of dou-
bling the fitness of the descendent cultures (Speilman &
Franklin 1992). If isolated populations of fish are not in-
bred, however, it is unlikely that the introduction of ge-
netic material from other sites will have large effects on
their viability (Leberg 1993), but matings of individuals
from different evolutionary lineages could even result in
outbreeding depression (Allendorf & Leary 1986). Thus,
the management strategy of supplemental gene flow
must be practiced with caution, particularly in light of
the unexpected yet dramatic level of mtDNA divergence
characterizing the Black Draw locality from other sites
within the Rio Yaqui.

Our studies with endangered topminnows emphasize
the need to use many types of biological data when for-
mulating management decisions involving endangered
populations. Life histories, morphology, allozymes, and
mtDNA each provide unique but seemingly incomplete
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perspectives concerning the evolutionary relationships
among remnant populations. Furthermore, our under-
standing of the genetic relationships among topminnow
populations is far from complete. As additional analytical
tools become available, systematic relationships of these
and other threatened species should be reassessed so
that conservation biologists can make sound decisions
regarding potential management strategies.
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