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Abstract

The Beverton—Holt recruitment model can be derived from arguments about evolution of life history traits
related to foraging and predation risk, along with spatially localized and temporarily competitive relationships in
the habitats where juvenile fish forage and face predation risk while foraging. This derivation explicitly represents
two key biotic factors, food supplyXand predator abundand®)( which appear as a risk rati®(l) that facilitates
modelling of changes in trophic circumstances and analysis of historical data. The same general recruitment
relationship is expected whether the juvenile life history is simple or involves a complex sequence of stanzas; in
the complex case, the Beverton—Holt parameters represent weighted averages or integrals of risk ratios over the
stanzas. The relationship should also apply in settings where there is complex, mesoscale variation in habitat and
predation risk, provided that animals sense this variation and move about so as to achieve similar survival at all
mesoscale rearing sites. The model predicts that changes in food and predation risk can be amplified violently in
settings where juvenile survival rate is low, producing large changes in recruitment rates over time.
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Introduction survival rates; (2) biotic factors may have caused the
persistent changes; or (3) a combination of abiotic and
There are two great questions in the study of fish biotic factors may be responsible for the changes. In
recruitment: (]_) what causes h|gh variation, and (2) this paper, we developamodel that assumes that biotic
why is recruitment most often nearly independent factors, namely predation and food supply, influenced
of egg or larval production over wide ranges of by environmental factors, are the dominant causes of
parental abundance? A simplistic approach to these Persistent survival rate changes. This argument is not
questions has been to assume that recruitment isneéw; for example Friedland et al. (1993) concluded
‘limited’ not by egg production but by environmental that a significant proportion of variation in North
factorS, and that variation is driven by Changes in American Atlantic salmon recruitment is driven by
such factors over time. Two main criticisms of this changes in marine winter habitat area affecting both
approach have been that the term limitation is danger- intraspecific Competition for space and food resources,
ously vague, and that correlations between recruitment @2nd predation of post-smolts.
and environmental indices are notoriously prone to ~ The Beverton and Holt (1957) recruitment model
breaking down soon after they are published (Drink- has provided a useful description of cases in which
water and Myers, 1987; Walters and Collie, 1988; recruitment is nearly independent of parental stock
Walters and Juanes, 1993). If average recruitment doessize over a wide range of egg depositions. It was
not change with parental abundance, there must bederived by assuming that juvenile mortality rate varies
powerful compensatory changes in larval or juvenile linearly with juvenile density. We have not taken
survival rates to result in similar recruitments when this assumption very seriously, preferring to view the
egg production is reduced, and we should not be time integral equation for final recruitment mainly as
surprised if the processes causing large compensatory@n empirical model with desirable shape properties
changes are also somehow responsible for causing the{recruitment falling toward zero at zero stock size, but
variability in recruitment. Perhaps more important, independent of stock size for higher stock sizes) for
now that we are starting to acquire longer time series harvest policy analysis. Hints that there may in fact be
of recruitment estimates, we are starting to see more good reasons for mortality rates to vary linearly with
examples of strong, persistent changes in survival ratesjuvenile densities have arisen from evolutionary argu-
that cannot be adequately explained on the basis of ments about how juvenile fish should respond to food
any obvious changes in environmental regimes. For competition and predation risk (Walters and Juanes,
example, both marine survival rates of coho salmon 1993). Such arguments have not led specifically to
(Oncorhynchus kisutdin southern British Columbia  the Beverton—Holt model, nor have they attempted to
(Coronado and Hilborn, 1997) and recruitment per account exp'lClﬂy for temporal variation in the main
spawner in some Atlantic Sa|mo§4|mo Sa|a)‘stocks biotic factors that could influence juvenile survival
from New Brunswick have shown essentially linear (food availability and predation risk). There is also
declining trends since the mid to late 1980s (Friedland €mpirical evidence that we should look specifically
et al., 1993). In these cases, there have been substanat juvenile (as opposed to egg or larval) stages for
tial changes in oceanographic indices like temperature, €xplanation of density-dependent effects on recruit-
but not in the form of simple trends that correspond ment (Lockwood, 1980; Myers and Cadigan, 1993).
well with the survival trends (Beamish et al., 1997). Here we show that Beverton—Holt models with
Abrupt Changes in physica| regimes are common, but explicit representation of effects of changes in food
survival patterns often do not show corresponding supply and predation risk can be derived from simple
abrupt shifts or persistent change following shifts. arguments about how juvenile fishes compete and
At least in such cases, we m|ght be wiser to seek adjust behaviour to Changesin Opportunities and risks.
explanations in biotic factors such as predator abun- Such models predict that very large changes in recruit-
dance and cannibalism, the dynamics of which are ment and survival rates can, and should, accom-
likely to involve progressive change, and hence trends Pany relatively small changes in food availability and
in impact (Walters and Juanes, 1993). predator abundance. If the arguments presented below
Three alternative explanations are possible for the are correct, even in broad outline, we have very likely
general failure to relate environmental factors clearly beenlooking and measuring at the wrong scales and in
to persistent changes in survival rates: (1) other abiotic the wrong places for causes of recruitment variation.
factors may have caused the persistent changes in
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Derivation of the Beverton—Holt model from Decade

- .. B Ideal Free Distn.,
risk-sensitive foraging arguments .

simulations

Season/

The following analysis is based on the representation
ear

of mortality factors at three time scales (Figure 1):
(1) very fast variation on scales of hours to days in
behaviour of juvenile fish faced with predation risk Day
while foraging, with the assumptions that competition
for food can be locally intense and that most predation
mortality is likely to occur while juveniles are actively oy
foraging or dispersing to seek improved foraging sites;
2) c.umullat|v.e mortality on tlmg scale; of single and Metre Patch  Reach  Landscape
multiple life history stanzas within the first year or two b 1 Analvsis of iment relationshins should involve at

. . . . Igure 1. Analysis of recruitment relationships should involve a
of life, Wlth food ‘?md predat|on risk treated QS _ConStant least three space-time scales: (1) the very fine scales at which
(or noisy but with no temporal trend) within each jyveniles forage and face predation risk; (2) larger scales at which
seasonal stanza; and (3) interannual (or among-cohort)we observe net recruitment rates; and (3) long-term population
variation caused by Ionger-term dynamic changes in _dynamlcs scales over which the recruitment relationship has an
food and predator abundances. This section ShoWslmpact on population change. The extended Beverton—Holt model
00 ¢ P o . e Nt ] derived in this paper provides a convenient way to bridge from the
how linear variation in mortality rates with juvenile first to second of these scales.
density could arise within single life history stanzas.

| Beverton-Holt
equation

o i ) . High values of the small-scale exchange and
A ba5|_c implication of risk-restricted foraging feeding parametets m, and @&/A) imply thatf, will
behaviour quickly move to and remain near a moving equilibrium

) ) . (with I, andN;) defined by setting the derivative in
Walters and Juanes (1993) pointed out that juvenile Equation 1 to zero:

fishes generally forage in highly restricted spatial

‘arenas’ in close proximity to refuges from predation, fi =kl /[m+ (a/A)N;]. 2)

and that competition for food can be intense within ) N _

such arenas even when total food abundance appeard Nis proposition, that there should be a strong inverse
unlimited when measured at larger spatial scales. Theyelationship between available food densftyand
pointed out that a remarkable variety of physical and juvenile densityN; even when total food supply

behavioural circumstances lead to the arena foraging @PPears unlimited, is critical to the arguments that
structure on small space-time scales, ranging from follow. Note that the arena parametérsmand @/A)

juveniles hiding in littoral shallows to juveniles hiding are defined by a very complex interaction of habitat
behind their neighbours in dense shoals. They noted Structure, behavioural properties of food organisms,
that food density, within such foraging arenas can be and how juveniles perceive severity of predation risk

dominated on small scales by exchange and foragingn choice of arena size#.,&_ Within any large juvenile
processes, withf, varying rapidly according to a rearingarea, the ‘arena’ is not a single place but rather
differential equation of the form: a complex spatial set of foraging sites-times.

It is not critical to the arguments that follow
df,/dt = kI, — mf, — (a/A)N, f,. (1) whether we can measure (or even define precisely)
the parameters of Equation 2 in the field. Perhaps

Herel, is overall food density in the water surrounding the best way to think about foraging arenas is as
the foraging arenas, delivered to the foraging arenas what philosophers of science call “theoretical objects”
through processes like prey and water movement at (Kuhn, 1962), which are things that we cannot define
rateskl,;; mf represents loss of prey from foraging completely, or measure directly, but help us to make
arenas owing to the same processes (and others such agseful predictions when we pretend they exist (the
insect emergence); and/) is a, the area or volume  Bohr atom is an obvious example).
swept per foraging juvenil&l, per time in the arena
(which may or may not involve active movement by
the juvenile), divided by, the arena area or volume.
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Temporal variation in mortality rate for animals An obvious next step is to suggest that instan-
selected to seek minimum growth trajectories taneous mortality rate due to predation is directly

proportional to time spent foraging, i.e.
The next step in the derivation is to suppose that

juvenile fish adjust the proportion of timp, that dN;/dt = —Z;N; = =R, ps N; (6)
they spend in foraging areas so as to try and achieve
per capita food consumption rates, where natural ~ WhereR; is the instantaneous mortality risk per time
selection has adjusted these feeding rate goals so thaspent foraging. Here we assume that when juven-
the fish will achieve a growth trajectory that is in iles are not feeding, they minimize predation risk by
some sense optimal. Here optimal is used in an evolu- hiding, remaining stationary or by schooling tightly.
tionary sense, with respect to the balance of growth Substituting Equation 5 into this model results in a
versus predation risk, and with respect to potentially differential equation for cumulative impact &¥:
harsh constraints such as the need to reach some crit-
ical minimum size by the end of a growth stanza in AN /df = —Ri[m + (a/A)N,]c" / (akI) Ny (7)
orderto be able to overwinter successfully or minimize
some size-dependent risk later in life (review, Walters
and Juanes, 1993). Again, for the arguments that
follow, we need not be precise in predicting what
c* should be; it matters only that animals do in fact
make adjustments in foraging time when faced with
changes in food availability driven by abiotic factors
(I;, kin Equation 2) and competitiot\ in Equation  \yhere:
2). Further, Fhe argur_ne.nts \_NlII hold if there is con.S|d- a1 = [R,/1]c*m | (ak) (9a)
erable individual variation in response, as predicted
for example by dynamic programming models that and
show how individuals with large size or energy storage az = aqa / (mA). (9b)
should be less prone to make risky foraging decisions
(have lowerpys) than individuals that have fallen
behind an overall best growth trajectory (Mangel and
Clark, 1988).

If animals do attempt to achieve consumption rate
c*, whether due simply to hunger or because of long-
term natural selection, they need on average to adjust
py so that

Over time scales short enough to treat R;, I, and

the foraging parameteks m (a/A) as constant, we can
express Equation 7 in terms of aggregated parameters
a1 andas as

dN, /dt = —a1N; — apN? (8)

That is, instantaneous juvenile mortality rate should
vary linearly with N;, having an intercept or base
ratea; and a compensatory slope. Each of these
mortality parameters should vary over longer time
scales (multiple life history ‘stanzas’, years) in propor-
tion to the risk ratioR/I;, where agairR; is instan-
taneous predation risk per time foraging ahdis
. overall food abundance. The base mortality raie

< =apyfi 3) should be higher in environments with more predators
where agaira is the volume or area of arena swept ©F less food, where food is delivered to forz_;lging arenas
per time foraging and, is arena food density. In More slowly & small), and/or where animals seek
the presence of competitor abundaée combining higher consumption rates owing to factors such as

Equations 2 and 3 implies the relationship increased metabolism at higher temperatures. Interest-
ingly, the compensation parameters should vary
¢* =apskl; [ Im + (a/A)N;] (4) in the same way, but should be lower in situations
where foraging arena sizé) is larger. Beverton and
which implies thap should be adjusted so that Holt (1957) suggested in deriving the original model
that predation effects should be concentrated in the
ps = Im+ (a/A)N;Ic* / (akl,). (5) a1 parameter, whereas the above formulation suggests

that both the rate parameters should vary Vith
That is, animals seeking to achieve feeding rate

c* should vary the mean proportion of time spent The single-stanza Beverton—Holt Model

foraging linearly with density of competitorhly), and

in inverse proportion to overall food abundance as Solving differential Equation 8 foN; over any life
measured bkl,. history stanza of durationT, short enough so that



anday are relatively constant, we immediately obtain
the familiar Beverton—Holt input—output relationship

N1, = B1No/ (1+ B2No) (10)

where the slope and carrying capacity parametgers
andg2 are defined from the rate parameters by:

B1 = exp(—a1Ty) (11a)

P2 = (a2/a1)(1— p1) =a /(mA)(1—p1) (11b)

in whichNr, is the output number of recruits surviving
the stanza andNp is the input number of juveniles
entering it.

As a1 and a2 in Equations 1la and 11b are
predicted as a function of factors controlled by

small-scale interactions (Equations 9a and 9b), the
Beverton—Holt parameters are therefore defined by
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critical total food consumptio®* at which they can
undertake some ontogenetic shift or reach a size large
enough for size-selective mortality rate to decrease
substantially (Figure 3). In the field, situations where
p is fixed are probably not uncommon, as a result of
prey and predator behaviour factors such as diurnally
restricted emergence times of insects.

For high initial juvenile inputNp, Equation 10
predicts that recruitmenily, should be essentially
independent o, at a limiting value

%imit) = B1/B2 = (mAJa)exp(—a1Ty) /

[1—exp(—a1Ty)]. (12)
That is, asymptotic recruitment from any stanza
should be proportional to habitat sizeand exponen-
tially decreasing in the risk ratiB,/I,. Equation 12 is

these same small-scale interactions and vary with US€d below to evaluate sensitivity lf; to changes in

changes in the risk/food ratig /I, (Figure 2). Equa-
tion 11a points out a robust feature of the derivation:

we obtain basically the same prediction about recruit-

ment by assuming either that is adjusted to achieve
c* in fixed timeTy, or thatp; stays constant so thei
varies so as to cause a longer timieneeded to reach

R//1;; this sensitivity should be high in any case where
there is large absolute changesnwith change in the

risk ratio, i.e. when the maximum total survival rate
exp(—a1Ty) through the stanza is low. Note also that
if maximum (absent competitive effects) total survival
exp(—a1Ty) through the stanza is low, Equation 12 is

some size that defines the end of the stanza (only the'Ve!l @pproximated just bynjA/gexp(-aTs).

productc*T, need be constant).
Surprisingly, the Beverton—Holt model can be

derived by reversing the basic assumption that animals Representing complex ontogenetic changes in risks

vary py so as to try and achieve ratiaf over a fixed
stanza periodl, and assuming instead that animals
feed for a fixed fractiom, of the time while allowing
growth rate to vary so the total timleneeded to reach
some critical total size or cumulative consumption

and opportunities

Suppose we think of recruitments that we finally
measure as the result of a sequence of life history
stanzas, each described by a Beverton—Holt function

C* also varies. Under this density-dependent growth Of the Equation 10 form but with different parameter

model, instantaneous mortality rafe= R;p, due to

values owing to changes in foraging opportunities,

feeding should be constant (cohorts should die off at Predation risks, and environmental factors over time

the same rate given similar predation rRk whether
their initial density is high or low), and should vary
from year to year with changes in initial abundance
No. The Beverton—Holt model for numbers reaching
total consumptiorC* over a stanza is then given by
(Appendix 1):

Noe— 2T
exp(—a1)No / [1+ a2(1 — exp(—o1)) Nol

Nt

wherea; = C*RymVl;ka anday = a/(mA). That is, in
terms of risk ratio R/l) and habitat sizeX) effects,

it does not really matter whether we view animals as
varyingp so as to achieve constant ration or having

to live with variable total timeT needed to reach a

and as juveniles grow. It is easily shown (by substi-
tuting output from each stanza into the Beverton—Holt
equation for the next stanza) that any such sequence
of input—output relationships is itself a Beverton—Holt
function, i.e.Ny = afNo/(1 + B5No), whereNy is

final recruitment and\p is the number of fish entering
the first stanza (Beverton and Holt, 1957, pp. 48—49).
For ann-stanza life history, the overall recruitment
parameterg; andpg; are functions of the stanza-scale
parameters:

B = pIpP .. g (12a)

By =Y + gV + pVpPp® 4 (12b)
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Figure 2. Summary of the effects of foraging arena model parameters on the shape of the Beverton—Holt relationship.

where the superscripts in parentheses denote stanzasstanzas, of progressively shorter duratidips Then

That is, the overall recruitment slope parameipiis in the limit as thesd&; durations approach 0 (become
just the product of the slope parameters for the indi- differentials d), we can think of the by-stanza foraging
vidual stanzas, ang; is a survival-weighted f) and risk parameter@f‘) aés) (or the Bs) as continu-

are survival rates) sum of the stanza compensation ously changing functions of size and age, i.e. to think
parameters. This peculiar algebraic feature of the of sas a continuous time variable and the parameters
Beverton—Holt equation is very likely a key reason as functions of this variable. The sum of terms in the
why the relationship keeps appearing in such a rich exponent of8; then becomes just an integral, as does
variety of data sets, where we believe that there the sum of terms defining;. These integrals may
are radically different patterns of life history stanzas, be difficult to calculate numerically for any particular
feeding ontogenies, and predation risks. choice of functional representation for how the para-
Consider what happens if we progressively divide meters vary withs, but that is not the point: the basic
the early life history into more and more, shorter Beverton—Holt structure will still be preserved. This
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tion and risk-sensitive foraging arguments leading to
the basic Beverton—Holt formulation imply that any
such dome-shaped relationships should often be much
less pronounced than predicted by the Ricker model,
except perhaps in circumstances where juveniles must
spend a very high proportion of time foraging and at
risk to cannibalism for some reason.

Representing mesoscale variation in habitat
structure and risk

The derivation above is based on thinking about
habitant structure, food competition, and preda-
tion risk at only two spatial scales: a large rearing
area, with microscale foraging arenas distributed in
some reticulated structure over that area. In many
cases this conceptual picture could be misleading.
Obvious examples are (1) juvenile fish distributed
along a large river that has strong spatial gradients in
productivity and predator populations, and (2) juvenile
fish dispersing into potentially very large rearing
areas from restricted spawning/larval settlement sites,
e.g. into estuarine and coastal areas from freshwater
spawning ares. For the following analysis, the poten-
tial overall rearing area is viewed as a collection
of subareas (rearing reaches) each containing arena
substructure but differing in terms of predator popu-
lations and food supplies (e.g. river reaches, coastal
bands progressively further from spawning areas).
Should we still expect a relatively simple Beverton—

constant growth rates while accepting variable mortality rate with Hot relationship in such cases? If so, should meso-

foraging time, or instead adopt fixed foraging time and hence accept
variable total time required to pass through the stanza. Relationships

in (b) under these two foraging time assumptions are shown for
situations of both low and high abundance as shown in (a).

scale spatial patterns in juvenile density be clearly
related to variation in risk ratiosR{/I;) and relative
area of foraging arenas\)?

Very interesting answers to these questions are
obtained if we assume that natural selection has acted

same mathematical result can be obtained by treatingon dispersal behaviours (of juveniles, and of adults

a1, az as continuous functions of time in the first place
when integrating Equation &*1 is expl- [ aa(t)],
andaj is a convolution integral ofi2(t) weighted by
exp[— / a1(t)] terms.

There is one obvious condition under which the

in settings where adult site selection restricts juvenile
movement opportunity) to make these behaviours
sensitive to risk ratios in the same ways assumed
in the basic derivation above. If dispersal behav-
iour is sensitive to opportunity and risk, animals

equations defined above could predict a dome-shapedshould redistribute themselves so that no mesoscale

relationship between final recruitmeNt and initial
juvenile number$g. That is where the risk ratig,/l
(now thinking of this ratio as varying with stanza s
rather than timet) is dependent on the number of
older animals in the population, 98 is some func-

rearing area ends up standing out as much better
(or worse) than surrounding areas. That is, better
areas should accumulate animals, and poorer areas
should lose animals, until dispersing individuals see
no particular advantage to any area they encounter or

tion of the same older juvenile and/or adult abundance test (MacCall, 1990). If we do see high differential

that causes variation iNg. However, the competi-

survival/growth rates among areas, such differences
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should be persistent only if juveniles do not have of habitat-specific values (eaahy, in @1 weighted by

enough time to seek out the better areas or if the N,/N, eachxy, in a2 weighted byN,%/NZ.

dispersal search process has extreme cost (energetics

or mortality risk). The following subsections examine = Adults select mesoscale areas, then juveniles are

three situations where we can make specific predic- restricted to the area of birth

tions about overall recruitment and spatial distribution

patterns by using the idea that dispersal tends to In this case, suppose juveniles are restricted to the

equalize fitness (i.e. survival) over space. habitatz where they are born, delivered, or tended

by adults, and that adult densitidk;, are adjusted

Juveniles move freely among mesoscale rearing areas through adult habitat site selection processes or local

with negligible dispersal cost adult population dynamics so that no habitat ends up
) ) standing out as a better site for producing young. From

Suppose there are a set of habitat uhitsl. .. H that an adult perspective, the quality of each h is meas-

juvenilgs can freely tegt, with each such unit having |,eq by net per-capita recruitment performasge=
predation/food/arena size paramet®ys 1., A, that N7z,/N4 where Nz, is the net recruitment predicted

do not change rapidly over the stanza(s) of highest som Equation 10 so as to include Beverton—Holt
juvenile mortality.Habitat unitsare spatially distinct  offects of competition among the juveniles (and preda-
areas to which juveniles can disperse. However, theseyjg, risk). Equalization of performance among sites
units do not have to be morphologically different (€.9. (or |ocal population growth to an equilibirum where
littoral vs. pelagic zones in a lake). If juveniles seek @ yecryitment balances adult mortality, assuming similar
particular target food consumption rate (as above)  aqyit mortality in all habitats) implies similar values

and seek to minimize mortality risk to achieve this of NT /NA for all habitats, which can be expressed in
rate, they should move around so that instantaneoustermg of Equation 10 as:

mortality ratesZ;, = a1, + a2, Nj, are the same for all

h,i.e.Z, = Z That s, each rearing unit should satisfy Sp =S = puF | (L+ BonFNap) (15)
the relationshifZ = a1y, + a2, Ny, implying juveniles

distributed ad\;, = (Z — a1p)/erz;. This predicationcan  here adult fecundity i§ (soNog = FN,) and theByy,

be reexpressed using the definitionsxdfEquation 9) g, are given by Equation 11 with local predation and
as: food parameter®;, |, used in thex calculation for
each h. Solving Euation 15 for adult distributidiy
results in the prediction tha&d4, should vary linearly
with the B1,, B2n parameters, ably, = [Bw(FIS) —
1]1/(B2,F). This prediction can be expressed in terms
of a function that varies exponentially with risk ratio
R,/1;, as:

Np = [ZkApIy [ (¢"Rp)] — (mAp/a). 13)

If the habitat unitsh have (or are defined so as to
have) similarAy,, this prediction reduces to the linear
relationship:

Np ={[(ZkA/c*)In] [ Ry} — (mA/a) (14)
Nap = (mAjaS)exp(—aa,Ty) /

(N should be zero in habitat units where this equation [1—exp(—ay,Ty) —mA/(aF)] (16)
predicts negative numbers.)

That is, we should see linear variation in juvenile (with no adults predicted to use habitats where this
densities over habitats h of similar arena si2g, (  equation evaluates to less than 0).
with variation in the food/predation ratig/R;,. The The adult relationship (Equation 16) is not as tidy
slope of this relationship should decrease over time as the linear juvenile pattern of Equation 14, but
as total mortality rateZ decreases with decreasing makes the same qualitative prediction that there should
juvenile density, assuming that densities are not main- be a strong positive relationship betwebin, and
tained by schooling or other antipredator behaviours. the inverse risk ratid,/R; (becausexy, is propor-
Further, spatial evening in mortality risZ) implies tional R:/l;). It again predicts an overall Beverton—
that total juvenile numbers summed over habitats h Holt relationship for the summed relationships over
should decline according to a weighted Beverton— habitats (total recruits vsZ,N4;) but with compli-
Holt relationship t/dt = —%ja1,Ny — SpaonNZ = cated weightings for the local recruitment contribu-
—a1N — @;N?, where thea are weighted averages tions.



Juveniles disperse into a large habitat from restricted
spawning/settlement site
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conspecifics as their main hiding places (see Figure 1
in Walters and Juanes, 1993). To such species, gradi-
ents inN, can mean opportunities for reduced rather

Suppose we now think of the mesoscale habitat index than increased predation risk albeit with trade-offs in
h as a continuous variable representing distance from terms of increased intraspecific competition. It is easy

a spawning or larval settlement site, and treat juvenile
densitiesN;; as a continuous function df and time
t during the recruitment process. Assume that micro-

to visualize how the competing effects B, might
be expressed in patterns like rapid initial dispersal
of juveniles from natal areas followed by consolida-

scale arena structure and behavioural responses resultion into shoals that then move over large areas, in

also in continuous variation in mortality rafg, with

h andt, where as above we would expebt = a1,

+ a2, Np;. But now suppose that juveniles residing at
point h can expect to suffer mortality risk,dh for
dispersing a distancehdacross the habitat field. In
this setting, it only makes evolutionary sense for an
animal to move to positiom + dh if Z,,4; is less
thanDydh, i.e. if the mortality cost of moving is less
than the expected gain through reduced mortality risk
at a new residence location. Animals should be indif-
ferent to moving at break-even situations wheye

— Znyan = Dypdh because there will be no survival
advantage to moving when the costs of moving are
considered. lix; andaz do not change rapidly with

h, this break-even condition can be expresse®gs

= —a20N,/ah, implying that animals should disperse
along the habitat variablh unlessay (proportional

to the local risk ratioR,/l;) is small and/or there is

a strong spatial gradient in juvenile densigNg/oh
large negative).

So if juveniles can somehow detect spatial density
gradients9N,/ah via local movement forays or evolu-
tion of genetic expectations based on local risk condi-
tions Z,, the gradient break-even condition results
in three main qualitative predictions. (1) Dispersal

a sense then carrying their Beverton—Holt foraging
arena structure with them. But it may be difficult
or impossible to prove that such complex ontogenies
should result in the overall form of a Beverton—Holt
stock—recruitment relationship.

Sensitivity of recruitment rates to risk/food ratios:
amplification of biotic variation

An intuitive argument about longer-term (interannual)
recruitment variation might be that risk-sensitive
changes in foraging behaviour should dampen the
impacts on recruitment of changes in predator abun-
dance. The analysis above indicates that this intuition
is wrong. Thepg; parameter (= expfa1Ts), where

a1 is proportional to the risk ratid®/I;), or more
generallyg; for multiple stanzas, can be quite sensi-
tive to the risk ratioR;/l;. The proportional effect of
B1 on recruitment should not be cancelled via fhe
parameter because the dependence of this parameter
on the risk ratio is likely to be weaks, is propor-
tional to 1— exp(—a1T;), which is close to 1.0 if the
maximum survival rate exp{e1Ts) is low. A further
intuitive argument for multistanza cases might be that

should be most rapid (or common) near the start of compensatory effects at a later stanza might ameliorate
the process, when juveniles are most concentrated andyr dampen high variation due to biotic factors in early

the gradientdN,/oh is strongest. (2) Dispersal rates

stanzas. This intuition is again likely to be wrong,

should be much lower later on, when density gradients for the same reasons; note thejt = exp(—Eaf)Tg)

(and odds of finding a better site) are much weaker
(lower). (3) If risk D, dn, per move is high, the juvenile
distribution should show a relatively sharp boundary,
with this boundary perhaps moving between years
with changes in initial juvenile abundand®. As

in the previous cases, the general Beverton—Holt

which is sensmve to changes uf) at all stages for

WhICha or T, are large.

ConS|der situations where egg or larval inplgtis
large enough for recruitment to be near the recruitment
N("m't) predicted by Equation 12, i.e. for recruit-

response pattern should occur, but with parameter ment to not increase with respect to changedn
values that are complex spatial averages of local risk Assume further that the maximum survival ree

ratios and dispersal risk.

Unfortunately, there is at least one very serious
weakness and lack of generality in this whole line
of argument: many kinds of animadiefineforaging

= exp(a1Ty) is relatively low, implying the instan-
taneous mortality rat&s = a1 T, = —In(S) is high;
this is the typical situation for juvenile fish. For Iy,
Equation 12 behaves N§r'm't) (mA/gexp(—aiTy).

arenas through shoaling behaviours, i.e. treat shoals ofWe can easily reparametrize the mortality rA{eso as
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to evaluate how it should vary with the risk raiyl,, [
by expressing this approximation as:

NI & majoexp-GoHy a7y 8 1000

where the gain paramet&y is defined as:

Go = mc'T;Ry / (aklp) (18)

Log relative recruitment rate

1.00

andH;, is the relative risk ratio for year (or cohott) -

Hi = (Ri/Ro)/ It/ o) (19) i
measured relative to some base risk raiglo that 0.10F ——— §=0.1
has historically led to survival rat&. Note thatGg F S S =0.01
= —In(Sy) becauséo = 1.0. Now suppose we look at T, Sp = 0-0?1 |
relative recruitment rates for years (or cohottﬂ%), 0.50 0.75 1.00 1.25 1.50
as ratios to theN!'"™" implied by S. Using Equa- Relative risk ratio (H,)

. S . .
tions 17 to 19, such relative recruitment rates can be Figure 4. Effect of changes in the relative risk rati¢y (predator

expressed simply as: abundance /food abundance) on relative recruitment rate (rate in
limit 1— I yeart divided by mean rate), for alternative values of maximum
N(TI)/N(TImI ) — exg—Go(Ht — 1] = % —H) (20) total survival rateSy through a limiting juvenile life stage.

That is, recruitments ought to vary from year to year

relative to some base or average by amounts that are _ ) _
greater if base mortality ra®o = Zo is high and/or if reflects the widespread observation that recruitments

the relative risk ratidd, is much different from 1.0. tend to be independent of parental abundance unless
Figure 4 shows just how big the effects of changes that abundance is very low, it contains explicit terms
in the relative risk raticH, could be, for alternative that link recruitment variation to food, predator abun-
base survival rate%. If base survival rate were really dance, and habitat scale, and it is based in reasonable
low, say 0.001, it would take only: 10% change in assumptions about behavioural ecology at fine space-
H, to causet 50% changes in recruitment. At base time scales. And it seeks explanation for population
survival rate 0.1, it should take- 30% changes in changes at those early life history stages that we
H, to causet 50% recruitment variation. That such SUSPect to be most sensitive to interactions and envi-
large effects could arise from relatively small changes fonmental changes. But as presented, it is grossly
in trophic circumstances reminds us of the key point over_parametrlzed for most practlcal applications. This
made by Beyer (1989) and Ursin (1982), that the really S€ction shows one fairly simple way to reparamet-
remarkable thing is not how much recruitment varies, "12€ it S0 as to maintain the multispecies linkages
but rather why it varies so little. To avoid predicting €ven when it is difficult or impossible to measure
really massive changes in recruitment with changes relevant variables in commensurate units, to provide
in risk ratiosH, in the Beverton—Holt model derived & framework that is open to improvement as more
above, we have to suppose either that the critical refined information becomes available about trophic
stanza(s) wherel, applies are very short (sf for interagtions and. impacts Qf habitat change, and to
these stanza(s) is quite low), or that there are addi- allow mcorporapon of pasm hypotheses and .results
tional compensatory responses (such as changes ifrom comparative studies about likely recruitment

foraging arena size& with H,) not recongized in the ~ F€SPonses to extreme circumstances (e.g. very low
basic model above. spawning stock size). These are ambitious goals for

any model; the following results are intended to be a
starting point rahter than a definitive assertion about
Simplified parametrization for multispecies how to best parametrize the model.
assessments Assume we seek to make predictionsrefative
abundance$\;; over yearst for a set ofi = 1 ...n
The Beverton—Holt formulation above provides a species or functional groups, with each species repre-
tempting starting point for multispecies modelling. It sented by Beverton—Holtrecruitment at age 1. Assume



we want to express age 1 recruitmems, (i for
species, 1 for age 1for time) as:

Niyy = P FiNis / [1+ ,3/21'1(1 — Bu) FiNi:1 (21)

whereF; represent the mean age 1 + fecundity for
speciesi, 5/2,'; = a/l(mA) represents only effects of
changes in habitat size (Equation 11), and the recruit-
ment parameterg vary over time in relation to
predation risk ratios and changes in habitat factors
like A. Ordinarily we would approach this problem
by first estimating all théNs on some commensurate
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That is, given Ny and the sustainability assumption,
we do not have to treat at least the basic habitat size
parametersﬁéio as uncertain, and we can concentrate
attention on representation of the survival parameters
/3/1,'0- Changes in habitat sizéscan be represented by
relative variation inB/ZiO from the base value given by
Equation 22.

Next, note that there are ordinarily (and, it is to
be hoped from a management perspective) no good
data upon which to directly estimafe;o; B1.0F; is the
slope of the recruitment curve for very low spawning
stock, and that slope is certainly something that we do

scale (often inyolving some very questionqble assess-not want to see very often if at all. But from stock—
ment assumptions), then use methods like Ecopathecryitment summaries like Myers and Barrowman

(Christensen and Pauly, 1992; Polovina, 1984) and
multispecies virtual population analysis (MSVPA,
Sparre, 1991) to provide initial estimates of feeding
rates and mortality trophic flows from which we would
attempt to calculate juvenile mortality rates and risk
ratio components. Here it will be assumed that such
standardization is either impossible or highly ques-
tionable, and that thl;, are measured in a variety of
disparate units, not necessarily even numerical abun-
dances (e.gN representing aquatic insects might be
in g m—2 biomass unitN for some small fish might

(1996), we can obtain likely values measured as ratios
to the natural survival ratd;10/(F;N;0) = (1 — §)/F;.
Typically for fish, we expecpi;o to be on order 5—
10 x this natural rate (5« to 10 x improvement in
juvenile survival at very low stock sizes; Myers and
Cadigan, 1993). Letting the assumed ratiokhge.g.

K =5), we then know that;0 should be calculated so
as to satisfy the constraipt;o = K;(1 — s)/F;. This
approach amounts to reparametrizpiyO so that we
can easily make it consistent with general experience
(K) and the relatively stable population characteristics

be expressed in beach seine catch rate unit, and trouts, gnqdF;.

might be measured in numbers backcalculated using
VPA). Those who enjoy accounting models might
wish to replaceN;; with a full age-structured model,
using sum of age-specific fecundities numbers at
age in the recruitment function; this elaboration does
not change the basic approach at all.

Next suppose we define a set of baseline abun-
dance leveld\;o that we believe on the basis of past

From the original derivatiorgy;o can be expressed
as o = exp=rioRiollio), wherei;o = Tyc* mv(ak)
is a complex constant (for which it would be very
unusual to have direct field esimates) a&%d, 1,0 are
predation risk and food abundance indices for species
i evaluated at the baseline situatisyp. But if we use
the constraingy;o = K; (1 — §)/F;, then we know that
A has to satisfy:

data (or propose as a working assessment hypothesis)

would be naturally sustainable, i.e. displbly 1 ~
N;; = N;o on average in the absence of habitat changes.

Xio = —In[K; (1 —5;)/Fi11i0/ Rio (23)

This is exactly the same as assuming the existence ofgq we can calculate it immediately once we choose a

a natural unfished biomass or abundaBgén single-
species assessment. If specidsas average annual
survival rates; for age 1 + animals, we know that
the multispecies recruitment functions evaluated at
N;; = N;o should satisfy (- s)N;0 = B1;0F:N;o/[1 +
/3/2,'0(1 — B1io)FiNio], i.e. predicted recruitment should
just balance natural mortality of older animals. We can
use this constraint to calculate the habitat-population
scale parameteﬁ'zl.0 given by any estimate of the
survival rate paramete;o, as:

Boo = [BuoF: /(1 —si) — 11/

[FiNio(1 — B1o)]. (22)

reasonable method for calculating and scaling the risk
ratio factorsl;o andR;p. For simulations of changes
in habitat factors that influence the components. of
(Ts, c*, m, a, andk), we can vary\;; relative toA;o
(e.g. make it larger in warm years to reflect increases
in c*, lower in years of high water turbidity to reflect
reductions in food search radg.

Units of measurement for food availabilityy and
predation riskR;o are absorbed in the calculation of
Aio Using Equation 23, so we need be concerned about
calculating these ratios in a way that correctly repre-
sents theelativeimpact of changes in the;; on these
ratios. We cannot simply calculaiR and| as sums
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over theN;; that represent predators and food, without food availability (;;) may not increase proportion-
accounting somehow for differences in measurement ally according to Equation 24a at higher levels of
units and relative impacts (predatoxy;) and avail- interspecific competition.
ability as food (foodN;; components). Here is one In summary, this parametrization method requires
approach for scaling thR andl calculations. First, for users to specify baseline relative abundanblas
each significant consumption linkage of a prey species survival and fecundity estimatas F;, compensatory
i to a predatoy, attempt to estimate the following two  response factors or abilities, and the diet/predation
relative interaction factors: impact proportionsi’f.jf ) plﬁl,’), along with any para-

f) } ) o meters needed to describe temporal variation in habitat
Pj’" = proportion of the diet of typpanimals repre-  canacity/quality as reflected in the derived parameters

sented by type prey, at baseline abundances ﬁlzn andx;;. In the authors’ experience, these require-

- Nio, anq ) _ ments can quite often be met, with the possible excep-
Pj" = proportion of the total mortality of typé jon of the relative predationimpactfactd?g’) which
juveniles that is due to predator typefor depend on somehow apportioning mortality among

baseline abundance conditions. the predators that cause it. Time simulations proceed

by first calculating these derived parameters, then

EOt? thtT]t these p:oplortlons n;aed not sum to 1'_0; calculating the risk ratio factors in Equation 24 and
aving them sum to lesser values means assumlngapplymg them in Equation 21 witlgy;, given by

Fhat some other .(bUt constant) food and predatory exp(=riRi;/1;;). In terms of familiar stock assess-
impacts occur besides those represented by changesn?nent estimation methods, thé can be treated as

modelledN;; andN;;. For eac‘h andj, next calculate key leading parameters for fitting multispecies time
the base proportions offocR{j;) and predationimpact  geries, just as we often treBy as a leading para-
pl(g) not represented by the above proportions (2.0  meter in single species estimation. Ambitious analysts
sums of the modelled proportions). Then in time simu- Might even try to estimate th¢;, and the truly heroic
lations and other analyses of interactions, calculate theamong us might even include ti&/) and P?) in
risk and food indice®;; andl;; as: time series fitting procedures (until they see how badly
confounded the effects of these parameters generally
I = Pé{) + Z P,-ﬁf)Nn / Nio (24a) are in times series settings). _ N
; Particular care needs to be taken in defining
effective fecunditie§; for Equation 21. These should
_ p® (P) A7 ‘ be measured net of any density-independent egg and
Rir = Foi + Z Py Nin [ Nyo. (240) larval mortality rates that might apply before animals
! become large enough to display the sort of behavioural
This scaling method has the property thaand R responses assumed in the foraging arena relationships.
evaluate to 1.0 when food and predator abundancesQtherwise, the estimated exponential factorscould
are all atN;o. Increases and decreasesdNn relative be far too large and hence lead to unrealistically high
to N;o result in ratio changes relative to the propor- sensitivity of predicted recruitments to the risk ratios
tionsP/) andP(? initially estimated, no matter what ~ R;,/l;,.
units of measurement are used for theNote that
thel;; calculation requires a potentially questionable
assumption that all prey typéfave similar exchange  Discussion
ratesk, minto and out of foraging arenas; without
this assumption, the;; calculation would have to  The derivation above rests on two key, testable
account for potentially complex changes in apparent propositions: (1) that spatially restricted foraging
prey densities with changes in densities of competing creates competitive conditions that can drive juvenile
predatorsi{;;), due solely to differences in suscepti- fish to alter foraging time (or dispersal) with
bility of prey types to local depletion within arenas. increasing density of competitors, and (2) that
Further, localized interspecific competitive effects of mortality is due mainly to predation associated with
different species foraging in the same arenas are notforaging (and dispersal). Similar arguments could
represented in thl; calculation. For example, if the  be applied in relation to other potentially limiting
availability of a prey item I{;;) increases over time, resources such as spatial hiding places, with the
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central theme being that evolution of responses to basic assumption that eating and dying are positively
predation risk should involve behavioural changes linked in nature not for physiological reasons, but
that create localized resource competition. This because small animals cannot eat without exposing
leads to a worrisome point about how testable the themselves to being eaten. In other words, it is not
extended Beverton—Holt theory described above really solely the bioenergetics of growth that should interest
is. Suppose we go out and measure habitat use patterndéisheries scientists, but rather the implications for
and measure (or experimentally impose) changes in mortality of the time spent feeding to achieve this
risk ratios R/l; for some key life history stanzas, growth.
and suppose we get a negative result (no recruitment  So the generalized Beverton—Holt model comes
response to the measured change&ifh,. We can very close to being a real theory of recruitment,
salvage the theory just by arguing that we have failed representing observations and links to other ecolo-
to identify the right risk indexR; or resource indek, gical theory across a wide range of time-space scales.
or that compensation is actually occurring in another It even has an actual theoretical entity, the foraging
stanza. It may be impossible in practice, if not in arena, and is clearly well insulated from direct experi-
principle, to weed out all such alternatives. mental test and invalidation. It appears able to explain
Obviously the model offers a nice excuse for awide variety of observations, ranging from the nearly
why we have been so unsuccessful at finding clear, ubiquitous observation of recruitment being nearly
persistent correlations between recruitment and envi- flat when plotted against egg or larval abundance
ronmental factors. Direct effects of such factors can to the occurrence of high variation without obvious
be overridden by small, difficult-to-monitor changes environmental correlates or explanation.
in biotic variables. For example, Spencer and Collie Whether or not the model provides a useful general
(1997) found that application of a surplus production theory for description of variation in natural popula-
model incorporating a nonlinear predation rate (Steele tions, it could be of considerable practical value as a
and Henderson, 1984) to Georges Bank haddock relatively simple way to model alternative hypotheses
provided the best fit to a long-term historical data aboutimpact of major habitat alterations in freshwater
set showing prolonged periods of high and low stock and coastal marine environments. For instance, we are
productivity. Further, the main impact of environ- currently developing models for population dynamics
mental factors could very well be indirect, through of endangered fish species inthe Grand Canyon region
effects on parameters like*, a, A, m, k and R/I;, of the Colorado River (Walters and Korman, unpub-
and it is easy to see how some of these effects could lished data). Warm-water species such as humpback
work in opposite directions (e.g. increase in tempera- club (Gila cyphg Cyporinidae have apparently been
ture may increase* but also prey exchange rake severely affected by a whole series of changes asso-
leading to the same value & in Equation 18). At ciated with the Glen Canyon Dam: clear, cold water
the very least, the derivation above implies that we released from the dam has created not only unfavour-
need to be much more careful about how we articu- able thermal conditions for warm-water species, but
late hypotheses concerning effects of environmental also a massive trophic gradient through the Canyon
factors, with emphasis on describing precisely how with much higher primary and benthic insect produc-
any factor should influence interactions at the small tion in the upper reaches (Stevens et al., 1997) and
space-time scales where these actually occur. much increased abundances of exotic predatory fishes
Fisheries scientists have long recognized that such as trout. In this setting, the model provides a
growth and mortality rates are highly correlated framework for representing possible effects of various
(Pauly, 1980), but we most often explain this correla- mitigative measures (like warm water flow augmenta-
tion by arguments about linkage between physiolo- tion), on both recruitment parameters related directly
gical activity and ageing. At least for juvenile fish, to physical habitat factors (e.g. effects of tempera-
experience with aquaculture suggests that this argu-ture or turbidity on spawning, size of rearing areas
ment is fundamentally wrong: it is generally possible A, predator search rate$ and on tropic relationships
to obtain quite good survival rates just by providing (R/l ratios over space and time). In this case, we
adequate food while protecting juveniles from preda- need to develop recruitment submodels for a variety
tion, and growing little animals faster in such protected of species about which there is variable quality of
settings does not generally lead to big increases in life history and population data, so the Beverton—Holt
natural mortality rate. Such experience supports our relationship is computationally convenient as well as
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helpful in directing attention to key parameters that problem: we generally cannot measgialirectly, and
may influence juvenile mortality rates. how can we decide when we see a change in recruit-
The cross-scale arguments presented in this paperment whethepB; has changed, or instead the carrying
should serve as warning to the growing number capacityBi/82? Perhapsiitis time to start looking very
of population ecologists who are trying to develop hard for field methods to monitor long-term changes
very detailed, spatially explicit and individual-based in juvenile mortality ratesf;) directly, and for regu-
models for recruitment prediction and analysis of latory options that are robust to unpredictable changes
impacts of habitat alteration (Van Winkle et al., 1993, in 8;.
1997). To date, such models do not simulate processes In some ways the most important result in this
at the very fine space-time scales where mortality rates paper is buried in Appendix 1, where we hint at just
are actually determined by behavioural interactions. what a wide range of different behavioural ecolo-
Trophic arenas and their competitive impacts are most gies can give rise to the Beverton—Holt relationship.
likely to be defined by habitat structures and behav- In view of this generality, it is hard not to shout in
ioural processes at scales of a few metres and minutesoutrage when we see flat-topped recruitment relation-
to hours. While it is possible in principle to map ships interpreted mindlessly and wrongly as indicative
structure and function at such scales, fully explicit of recruitment limitation by environmental factors.
simulations of the cumulative impact of everything Such interpretations fail not only to recognize what the
happening at these scales probably will never be prac-word ‘limitation’ means in the first place; worse, they
tical from data acquisition or computational perspec- direct research attention away from the fascinating
tives. Further, it is not clear that there would be any world of ecological interactions where recruitment
real point to such explicit modelling exercises. There limitation actually occurs.
may be great value in developing spatially explicit
models to help understand the consequences of some
mesoscale processes such as juvenile dispersal o
spatial scales of hundreds of metres to kilometres. But
when we develop such models, we need to be much
more careful about how we represent processes atSupport for this research was provided by Natural
scales too fine to represent explicitly; in short, itis just Sciences and Engineering Research Council Oper-
not good enough to assume microscale homogeneityating Grant, and a contract from the Grand Canyon
in food availability and simple relationships such as Environmental Monitoring Centre. Special thanks to
feeding rates limited by handling time or satiation. Daniel Pauly for insightful criticisms and perspectives
Our derivation casts grave doubt on the conclusion about recruitment variation and trophic relationships,
of Walters and Parma (1996) that fixed exploitation and to William Walters for showing us where to
rate strategies may be a good way to cope with long- look.
term regime shifts in recruitment. That conclusion
was based on the proposition that tBe parameter
(proportional to recruitment curve slope near origin)
may often be relatively stable, while the recruitment
carrying capacitys1/ 82 parameter may be more sensi-
tive to environmental changes (i.e. stable reproductive
performance at very low stock sizes but long-term
variation in competitive outcomes at higher stock
sizes). Stable8; implies stable optimum exploita- At the heart of the derivation above is the presump-
tion rate (optimum rate calculations generally do not tion that food consumption rate is proportional to
depend ongz). Our assumption of stablg; may available food density;, which in turn depends on
have been only wishful thinking; if changes local competitive conditions such that apkl, / (m +
are in fact driven substantially by long-term changes (a/A)N;). Suppose we assume thats fixed at some
in predation and competitive regimes as measured by daily time proportionpg; we then replace mortality
R/l ratios, mediated by changes in habitat variables as Equation 7 with the simpler exponential model
well, fishing mortality rate goals should be adjusted
to such changes. That is a very difficult assessment dN/dt = —R; poN; (A1)

n
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Appendix 1. Why a Beverton—Holt relationship
may occur even if foraging time is fixed and time
spent in a juvenile stanza varies with density of
competitors



which implies that density declines over time within a
stanza as

N; = Noe™ %! (A2)

whereZ = R;po.

But now assume that graduation from a juvenile
stanza occurs at timewhen juveniles have achieved
total food consumptiorC*, where C* accumulates
according to

/t:T
t=0

Iikap
t=0

c* cdt

t=T
dt / [m + (a/A)Noe %']. (A3)

This is just the integral of the arena-scale time model
for variation in food consumption ratewith changes

in competitor densit\N;, whereN; is predicted from
Equation A2. Integrating Equation A3 to obtain an
analytical expression faC* results in:

C* = (I,ka/ Rem){In[m + (a/A)Noe ?T]
+ZT — In[m + (a/A)Nol}.

(A4)

Then solving this relationship betwe@&@f andT, for
the total timeT required to achiev€*, we obtain:
T = (1/Z)In[{expC*R,m/I;ka +

In(m + (a/A)No)] — (a/A)No} / m]. ~ (A5)

Substituting this prediction off into Equation A2
and rearranging the terms into familiar Beverton—Holt
equation format results finally in:

Nr = exp(—C*Rym / Lka)No /
{1+ (a/mAIA—-

exp(—C*R,m / I,ka)]No}.

(A6)

It should be noted that this equation should not be
applied (as a single stanza predictor of survival) for
contexts wherel can be large enough for the risk
ratio R/l; to change substantially overowing either

to juvenile growth (decliningR; due to larger body
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