SLOPE INSTABILITY FROM GROUND-WATER SEEPAGE

By Muniram Budhu,' Member, ASCE, and Roger Gobin®

ABSTRACT: Previous researchers have treated the magnitude and direction of the seepage vector as independent
variables and found that seepage, parallel to the surface, does not result in the minimum stable seepage slope.
In the present paper, the magnitude and direction of the seepage vector is shown to be uniquely related at the
seepage face, and seepage parallel to the slope results is the minimum stable seepage slope. Slope failures under
seepage are found to be progressive, and the stable slope angle depends on the direction of the seepage vector.
The effect of seepage direction on static liquefaction is investigated, and the seepage directions that initiate static
liquefaction depend on the slope angle and soil-unit weight. Analytical predictions of the minimum stable
seepage slope compare favorably with experimental results.

INTRODUCTION

Ground-water seepage has often resulted in catastrophic
slope failures. River banks, canal and reservoir embankments,
and hillside slopes exemplify situations where seepage erosion
has been observed. In this study, a two-dimensional (2D) lim-
iting equilibrium approach is used to analyze the minimum,
stable seepage-slope angle for an infinite, cohesionless slope
under a steady-state seepage regime. Iverson and Major (1986)
found that minimum slope stability for cohesionless soils oc-
curs when the seepage vector is horizontal. In the present pa-
per, seepage parallel to the slope defines minimum stability.
Slope failures in sand depend on the direction of the seepage
vector.

ANALYSIS OF SEEPAGE EROSION

The maximum stable slope angle for dry sand, under no
external load, is its angle of internal friction (). If seepage is
* permitted through the sand mass, it will collapse to a smaller
stable slope (stable seepage slope). Consider a 2D soil element
within a homogeneous infinite slope with stress-free bounda-
ries and slope angle o (Fig. 1). The seepage vector of mag-
nitude i (hydraulic gradient) is assumed to be inclined at angle
A, measured clockwise from the inward normal to the slope
(Fig. 1). Emergent seepage will impose a force per unit width,
iv.A, on the element where v, = unit weight of water; A = bz
= area of the element; b = length of the element parallel to
the slope; and z = height of the element (Fig. 1). From the
equilibrium of an elemental soil volume (Fig. 1), using Cou-
lomb failure criterion with the failure plane parallel to the
slope, the factor of safety against failure is

_ [(¥'1y.)c0s o — i cos Atan $
T (y'Mu)sino + isin A

Now, consider a flow net within a slope as shown in Fig.
2. On seepage face AB, A = 90° at A, and A = 0° at B. The
valid range of A on seepage face AB is, therefore, 90° = A =
0. Harr (1962) showed that the velocity at point C on seepage
surface AB (Fig. 2) is

v =k sin a/sin A )

and from Darcy’s law we obtain
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i = sin Msin A 3)
By substituting (3) into (1), we obtain

_ [(v'/y.)c0s o — sin a cot AJtan ¢

F
sin a(y'/y. + 1)

4

At the seepage face, flow is paralle! to the slope, and the
hydraulic gradient is greater than at any other point within the
flow domain. Thus, failures caused by seepage will be initiated
along or near the seepage face. The factor of safety of a slope
must be at least one (limiting equilibrium). From (4), for pos-
itive values of F, we obtain

(y'lyn)cos o — sinacot A = 0 5)
By simplification, (5) becomes
tan A = (y,./y')tan o 6)
The valid range for A, for a Coulomb failure, is then
tan”'(y,/vy' tan a) < \ =< 90° (Fig. 1). At limiting equilibrium
F =1, (1) reduces to

_ &'y, )sin a + isin A

= 7

tan & y'/y.)cos a — i cos N ™
By subsitituting (3) into (7), we obtain
. P

tan & = sin a(y'/y. + 1) ®)

(Y'/y.)cos a + sin a cot A

For seepage parallel to slope N = 90°, (8) further reduces to
Taylor’s (1948) equation

a = tan”'{(y' /. )tan $] 9

For many soils, a reasonable approximation is y'/y. = 1,
which by subsitution in (8) results in
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FIG. 1. Forces on Elemental Volume of Soil and Range of A for
Coulomb Failure and Static Liquefaction
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FIG. 2. Flow Field in Homogeneous Isotropic Soil Showing
Exit Velocity and Its Components along Seepage Face AB

tan a = tan ¢/(2 — tan ¢ cot A\) (10)

A plot of (10) for ¢ = 30° is shown in Fig. 3 for the valid
range of \ for emergent seepage at the seepage face, i.e., from
a maximum value of 90° to tan"'(y,/y’ tan &) = tan"'(1 tan
30°) = 30°; the corresponding values of i are also shown. Only
a single curve is generated for each equation; a family of
curves is not, as described by Iverson and Major (1986). For
example, if @ = 30° and seepage is horizontal, then A = (90
— a) = 60° and i = 0.577 in (3). Only one value of i is
consistent with this direction of seepage. The value of i, cor-
responding to the appropriate value of A, is shown in Fig. 3
for emergent seepage at the seepage face. The hydraulic gra-
dient at the seepage face, as expected from (3), increases from
1 (when \ = a) to its minimum value of sin a (when A = 90°).

The minimum stable seepage slope occurs when A = 90°,
i.e., seepage is parallel to the slope. Iverson and Major (1986)
proposed that minimum slope stability will universally occur
when A = 90° — ¢. Later, Iverson (1992) stated that A = 90°
— ¢ *‘does not rigorously apply to subaerial infinite slopes.”
According to Iverson and Major (1986), a slope originally at
its angle of friction (a = ¢) will achieve minimum slope sta-
bility when seepage is horizontal.

Iverson and Major [(1986) Figs. 3 and 4], show that o can
exceed ¢. They assumed that the slope angle in a cohesionless
soil can lie within the range 0 < a < 90°. The upper limit of
this range is invalid for a Coulomb failure. In the absence of
seepage forces, the maximum slope angle for a cohesionless
soil is its angle of friction, ¢. The range of the stable slope
angle is then 0 < a < ¢. The slope angle, o, can exceed &, if
seepage is directed into the slope.

In Fig. 3, the slope, originally at its angle of friction (a =
¢ = 30°), will fail once A exceeds 30° at the seepage face. For
example, if the predominant seepage direction is X = 60° (hor-
izontal seepage), for which i = 0.577, the slope will collapse
from o = 30° to o = 19°. The stable seepage slope decreases
with increasing A, reaching its minimum value for a Coulomb
failure, when the predominant seepage direction is parallel to
the slope (A = 90°). Slope failures influenced by emergent
seepage are therefore progressive, and the minimum stable
seepage slope is reached when A = 90°,

STATIC LIQUEFACTION

For static liquefaction, the vertical component of the see-
page force must be equal to or greater than the weight of the
soil. Resolving forces (seepage and soil weight per unit width)
vertically (Fig. 1), we obtain

W= iy, A sin(A + a — 90) = iy,A cos(A + o) an

By substituting and rearranging W = y'A and i = sin o/sin A
in (11), the results are

. D o1
(cosa+cosx)S‘2°‘=1-=G—= 1-nG—1) @12
[4
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FIG. 3. Slope Angles for Different Seepage Directions and
Corresponding Hydraulic Gradient for ¢ = 30°

a0
o8 & &8 & & & 3

.8 085 09 o8 1
Thw

FIG. 4. Variation of Seepage Direction for Static Liquefaction

as Function of y'/y,,

where G = specific gravity of the soil; e = void ratio; and n
= porosity.

For most soils, y'/y, = 1 and the solution of (12) is A =
—a. Therefore, static liquefaction for most soils (y'/y, = 1)
will take place when seepage is vertically upward, correspond-
ing to a hydraulic gradient of — 1. For soils with effective unit
weight ratio vy'/y, other than 1, static liquefaction will occur
at seepage directions determined from (12). A plot of (12) is
shown in Fig. 4 to define the directions of seepage that will
induce liquefaction for variations in <y'/y, normally obtained
in practice. The practical range of N that will cause liquefac-
tion is shown in Fig. 1. ’

COMPARISON OF ANALYSIS WITH LABORATORY
EXPERIMENTS

A sand mass was deposited in water over a 3 m length in
a flume 5.5 m long, 0.61 m wide, and 0.76 m high. A slope
at an angle o = 32° was constructed on one face of the sand -
mass in the flume. The properties of the sand, determined from
the following laboratory tests in accordance with ASTM are:

¢ Grain size (ASTM D421-422)—average grain size, Ds, =
0.73 mm, coefficient of uniformity C, = 3.9

* Unit weight (ASTM D1556-82)—~,, = 19 kN/m’

» Constant head-permeability test (ASTM D2424-68)—co-
efficient of permeability, k, = 5.0 X 107 cm/s

+ Shear box test (ASTM D3080-90)—¢ = 32°

One of the longitudinal sides of the flume was constructed
from glass enabling observations and measurements of slope
changes caused by ground-water seepage.

The external water level (water level in front of the slope)
was raised to the top of the slope and kept there until equilib-
rium was achieved with the ground-water level on the slope.
As the external water level was lowered at a rate of 0.1 m/
min (maximum withdrawal rate permitted by the outflow
valve), cracks appeared on the slope. When the external water
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FIG. 5. Observed Stable Seepage-Slope Angles as Function
of Number of Drawdowns

level reached an elevation 7.5 cm from the base of the slope
(low water level), the slope failed. A vertical face, 27 cm in
depth from the top of the slope, was followed by a slope of
22° after the failure (Fig. 5). The preceding procedure of rais-
ing and lowering the external water level was repeated several
times. During the second rise of the external water level, the
vertical face collapsed indicating that this face was formed by
capillary action. Further slope failures were observed until the
slope eventually stabilized at an angle of 18° (Fig. 5).

The results indicate that slope failures under seepage are
progressive until a minimum stable seepage slope is achieved.
From (9), the predicted minimum stable seepage slope for the
sand mass is O, = tan '{{(19 — 9.81)/19]tan 32°} = 17°,
which is in good agreement with the observed value of 18°.
While scaling effects and boundary conditions are likely to
influence the test results, these were judged to be negligible,
since observations of failures on sandbars in the Grand Canyon
were similar to the experimental results (Budhu and Gobin
1994). A more detailed series of experiments was conducted
by Amanullah (1993), using various initial slopes, and rates
of rise and drawdown of the external water level resulted in
similar observations and conclusions to the preceding.

CONCLUSIONS

The results of the analysis presented in this paper provide
bounds on the seepage direction that provoke slope failures by
Coulomb mechanism. Slope failures resulting from seepage
forces are progressive, and the minimum stable seepage slope
is reached when seepage is parallel to the slope. The hydraulic
gradient and the seepage direction are shown to be uniquely
related at the seepage face and are not independent variables,

e~

as was previously assumed. The seepage direction that initiates
static liquefaction depends on the slope angle and the soil unit
weight. For most soils, static liquefaction will occur when
seepage is directed vertically upward.
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APPENDIX ll. NOTATION
The following symbols are used in this paper:

area of soil element;

length of soil element parallel to slope;
coefficient of uniformity;

average grain size;

void ratio;

factor of safety against Coulomb failure;
specific gravity;

magnitude of seepage vector;

coefficient of permeability;

normal force on elemental soil volume;
soil porosity;

weight;

height of element;

slope angle;

effective (submerged) unit weight of the soil;
saturated unit weight of the soil;

total unit weight of the soil;

unit weight of water;

direction of the seepage vector; and
angle of internal friction.
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