
A MULTIDIMENSIONAL MARKER-IN-CELL HYDRAULIC AND SEDIMENT 
TRANSPORT MODEL FOR BRAIDED RIVER FLOW 

 
Robert Thomas, Schools of Geography and Earth Sciences, University of Leeds, Leeds, UK, 

r.thomas@earth.leeds.ac.uk; Stuart Lane, Department of Geography, University of 
Durham, Durham, UK, S.N.Lane@durham.ac.uk; Jim Best, School of Earth & 

Environment, University of Leeds, Leeds, UK, j.best@earth.leeds.ac.uk 
 

INTRODUCTION 
 
Recently, fluvial geomorphologists have expended a great deal of effort in developing numerical 
models to simulate braided rivers. Contingent upon limitations imposed by computing power 
(Nicholas (2003)) and a lack of integrated field and laboratory datasets at a suitable resolution 
(Lane and Richards (2001)), approaches have ranged in complexity in relation to the spatial and 
temporal scales to which they have been applied. For example, at the scale of individual braid 
bars or confluence units, two-dimensional depth-averaged and fully three-dimensional hydraulic 
models have been used to simulate flow patterns (e.g. Lane and Richards (1998), Lane et al. 
(1999)). At the braidplain scale, one-dimensional models of section-averaged flow and bedload 
transport (e.g. Paola (1996)), simplified two-dimensional cellular automata models (e.g. Murray 
and Paola (1994)) and, recently, two-dimensional models have been applied (e.g. Nicholas 
(2003)). However, only with the use of a fully three-dimensional model can the important 
secondary circulation processes that lead to the scour and deposition patterns seen in braided 
rivers be accurately represented. 
 
Given the apparent dichotomy between the need for three-dimensional models and the associated 
computational and data limitations, this paper presents the formulation of a modified 2+ 
dimensional Marker-in-Cell model (Tetzlaff and Harbaugh (1989)). Lagrangian momentum 
tracers that have neither mass nor volume are tracked through an Eulerian mesh that 
characterizes the field variables (e.g. depth and bed elevation). For each tracer, the momentum 
equation is solved in its Lagrangian form to reduce numerical dispersion, whilst the continuity 
equation is solved in its Eulerian form to achieve improved mass conservation (e.g. Chin 
(1997)). As tracers accelerate and decelerate due to interactions with each other and topography, 
erosion and deposition are induced. The model presented here simulates fluid flow and sediment 
transport in the horizontal plane and depth and deposits in the vertical plane. Non-uniform total-
load sediment transport is simulated by using a non-equilibrium approach, dividing the sediment 
mixture into size fractions and accounting for the effects of hiding and exposure. Historical 
erosion and deposition is represented by a mixing layer approach. 
 

EQUATIONS OF TWO-DIMENSIONAL OPEN-CHANNEL FLOW 
 
It is possible to obtain two key equation sets for a single fluid unit from Newton’s laws of 
motion: (i) the law of conservation of mass for an incompressible fluid in Eulerian form and (ii) 
the Navier-Stokes momentum equations for an incompressible fluid (Lane (1998)). In two 
dimensions, and assuming that the fluid is homogeneous, incompressible and at constant 
temperature, the continuity or mass conservation equation can be expressed as: 
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where h = flow depth, t = time, and U and V are depth-averaged velocities in the x and y 
directions, respectively. 
 
In Cartesian coordinates, the simplified depth-averaged shallow water momentum equations may 
be written as: 
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where ( )
Dt

D  = material or total derivative, g = gravitational acceleration, H = water surface 

elevation, μ = molecular viscosity, ρ = density of water, ν = turbulent eddy viscosity = 
( )

( ) 2/182
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e κ− , derived from the Kàrmàn-Prandtl law-of-the-wall, assuming the depth-averaged 

velocity occurs at h/e within the water column (where e is the base of natural logarithms), κ is 
the von Kàrmàn constant which has a value of ≈ 0.33 in suspended sediment-laden flows 
(Bennett et al. (1998)), cf = Darcy-Weisbach friction coefficient, and Q = ( ) 2/122 VU + . 
 
In arriving at equations (2) and (3), a number of simplifying assumptions have been made. The 
Coriolis force, horizontal variations in atmospheric pressure and water surface wind stress terms 
have been neglected (e.g. Lane (1998)), and it has been assumed that the hydrostatic pressure 
distribution (e.g. Vreugdenhill (1994)) and constant density hold over the flow depth. In addition 
the shear stress and dispersion terms have been modeled very simply, assuming that dispersion 
dominates turbulent momentum diffusion, and terms involving cross-derivatives have been 
neglected (Westerink, 2003). In these equations, all velocities are time-averaged and uppercase 
letters denote depth-averaged velocities. Through the use of the material derivative, equations (2) 
and (3) express both the Eulerian and Lagrangian forms of the equations. 
 

SEDIMENT EROSION, TRANSPORT AND DEPOSITION 
 
Commonly, three main modes of sediment transport are distinguished: wash load, suspended 
load and bed load. This research is concerned with the latter two modes. The suspended load 
fraction is made up of particles that are held in suspension by turbulent eddies, whilst the 
bedload fraction is made up of particles that roll, slide, or saltate along the bed. In this research, 
the water column is treated as a single bed-material load layer, since computational efficiency is 
of key importance and because this technique is less reliant upon empiricism (Langendoen 
(2000)). 



Non-equilibrium bed-material load transport model:  Many early sediment transport models 
assumed that local equilibrium conditions applied when simulating bed-material transport. This 
sets the actual bed-material transport rate to be equal to the sediment transport capacity, the 
transported sediment load under equilibrium conditions (i.e. uniform flow and no net erosion or 
deposition) (Langendoen (2000)). However, this may lead to unrealistic predictions of bed 
deformation, especially in cases where flows are above (e.g. after urbanization, forest 
exploitation, channelization; Simon (1992), Stott et al. (2001), Trimble (1997)) or below (e.g. 
downstream of a reservoir; Sherrard and Erskine (1991)) capacity for much of the time. To 
overcome this limitation, a non-equilibrium transport model is implemented in this work. 
 
For the determination of sediment transport in a non-uniform sediment mixture, it is convenient 
to divide the mixture into several size classes. For each size class k, the two-dimensional 
advection-diffusion equation of total load sediment transport can be derived (Wu et al. (2000a)): 
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where Ctk = total load sediment concentration of the kth size class, εs = ν /σs = eddy diffusivity of 
sediment (ν = eddy viscosity and σs = turbulent Prandtl-Schmidt number), Eb = entrainment rate 
of particles from the bed, and Db = deposition rate of particles onto the bed. The net flux at the 
bed, Ebk – Dbk, equals the change in bed elevation due to erosion and deposition of each size 
fraction. The bed elevation change by size fraction can be formulated as: 
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where λ = bed porosity, Zk = bed deformation of the kth size class, α = non-equilibrium 
adaptation coefficient (Armanini and Di Silvio (1988)), ω = fall velocity (available from lookup 
tables published by, for example, USICWR (1957)), and Ct* = the total load transport capacity. 
 
Sediment transport capacity:  Solution of equation (5) requires the determination of the 
sediment transport capacity. Sediment transport capacity is determined utilizing the formulations 
of Wu et al (2000b), which determine the fractional transport capacities of bed load and 
suspended load, and take into account hiding and exposure effects among different size classes. 
The total sediment transport capacity, Ct*, is then defined as:  
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where pk = fraction of sediment in the kth size class available for transport; and C*k = sediment 
transport capacity of the kth size class. The fraction pk depends on the fractional content by 
volume of size class k in the surface layer and the fraction of sediment in the kth size class 
entering the reach from upstream. 
 



Representation of erosion and deposition- sediment layers:  To represent historical erosion 
and deposition, the bed can be divided into a surface or active layer and a subsurface layer. 
These layers constitute the mixing layer (e.g. Hirano (1971)). Sediment particles are 
continuously exchanged between the water column and the surface layer. In contrast, sediment 
particles only exchange between surface layer and substrate when the bed scours or fills 
(Langendoen (2000). Variation in the bed material composition in the surface layer is determined 
from mass conservation: 
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where βk

s = bed material composition in the surface layer, a = thickness of the surface layer, 
tzb ∂∂ = total bed deformation rate, βk

* = βk
s when tzta b ∂∂−∂∂  ≤ 0, and βk

* = the bed 
material composition in the subsurface layer when tzta b ∂∂−∂∂  > 0. 
 

NUMERICAL SOLUTION OF FLOW AND SEDIMENT TRANSPORT EQUATIONS 
 
In this research, a ‘segregated’ (Tannehill et al. (1997), Roache (1998)) or decoupled approach is 
utilized to solve the governing equations at each timestep. Two different solution methods for the 
equations are required- one for the Lagrangian momentum equations and one to solve the 
Eulerian continuity equation and sediment transport equation and to couple the solutions. This 
coupling is essential in order to ensure conservation of both mass and momentum (Tannehill et 
al. (1997), Roache (1998)). 
 
Solution of the Lagrangian momentum equations:  The simplified momentum equations in 
Lagrangian form are solved utilizing the second order in time, fourth order in space Runge Kutta 
method (e.g. Press et al. (1992)). Press et al. (1992) note that this method provides the maximum 
accuracy for the minimum of effort (in their words, “it gives the most bang for the buck” (p 
716)). Since tracer positions do not necessarily coincide with grid nodes (which contain the 
values of flow depth and velocities), interpolation is required to determine h and xH ∂∂  and 

yH ∂∂ . It is assumed that the water surface is made up of a series of hyperbolic paraboloids, 
whereby the water surface elevation is fitted exactly at each grid node and so avoids 
discontinuities at cell edges. A hyperbolic paraboloid degenerates to a plane when its four 
vertices are coplanar, which is justified by the fact that water surfaces tend to obtain minimum 
potential energy in the form of a plane (Tetzlaff and Harbaugh (1989)). The interpolation 
function is: 
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where i and j are the x- and y-coordinates of the tracer within the cell, respectively (0 ≤ i,j ≤ 1). It 
follows by differentiation that: 
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and: 
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Once the positions and velocities of all tracers have been updated, velocities at each grid node 
are updated by averaging the velocities of all the tracers within a grid cell. The accuracy of the 
flow representation is hence directly related to the number of tracers in each grid cell. 
 
Solution of the Eulerian continuity equation and solution coupling:  Comparison of the 
Eulerian two-dimensional shallow-water equations and the Euler equations of compressible 
isentropic gas dynamics indicate that they have the same mathematical structure (Majda (2002)). 
This suggests that numerical methods designed to solve compressible flows can be tailored to 
solve the shallow water equations. Several schemes have been devised to solve the decoupled 
continuity and momentum equations, such as the SIMPLE family (SIMPLE (Patankar and 
Spalding (1972)), SIMPLER (Patankar (1980))), PISO (Issa (1985)) and fractional step methods 
(e.g. Chorin (1968)). The SIMPLE method has been applied to compressible flows by, for 
example, Demirdžić and Perić (1990) and Ferziger and Perić (2002). PISO has been applied to 
compressible flows by Issa et al. (1986). Since the solution of the Lagrangian momentum 
equations should yield correct velocity fields, application of the SIMPLE method would lead to 
initial divergence and hence increase the required number of iterations for convergence (Patankar 
(1980)). To overcome this difficulty, Patankar (1980) developed the SIMPLER method, and 
hence it is adopted as the second solution method here. 
 
 
Demirdžić and Perić (1990) detail the method to assemble the components of the algebraic 
equations in order to implicitly solve the transport equation for a scalar, φ. During solution, the 
velocities, U and V and the concentration Ctk can be considered as scalars. The discretized 
transport equation for a scalar quantity in integral form and a colocated finite volume grid is: 
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where nUi ⋅  is the velocity perpendicular to the cell face, l = 1,2,3,4 (east, south, west and north 
faces), Γφ is the relevant diffusion coefficient, and qφ is the source term. 
 
The method of Rhie and Chow (1983) to handle ‘checkerboard’ pressure distributions is 
implemented. By inserting the relevant scalar into the equation, a matrix equation results which 
can be solved iteratively for φ. In this research, the suggestion of Demirdžić and Perić (1990) is 
followed and Stone’s (1968) SIP solver is implemented. The rate of convergence of this already 
efficient solver may, at a later date, be improved by utilizing it as a smoother within a multigrid 
framework (e.g. Ferziger and Perić (2002)). 
 
The solution algorithm can be summarized as follows: 



1. Employ the 4th order Runge Kutta solver to update the velocities and positions of the 
momentum tracers. Average all tracer velocities within each grid cell to determine nodal 
velocity values. 

2. Assemble the coefficients for the discretized equation (11) and hence calculate 
pseudovelocities (Patankar (1980)). Assemble and solve the SIMPLER pressure equation 
resulting from the discretized equation (11) (Patankar (1980)). 

3. Using this new pressure field, solve the discretized equation (11) with φ = U and then V to 
update the grid node velocities. 

4. Calculate new mass fluxes using the updated grid node velocities, and determine the mass 
imbalance in each grid cell. 

5. Assemble and solve the pressure correction equation resulting from the discretization. Apply 
SIP until the sum of absolute residuals is reduced by a factor of 5. 

6. Correct the nodal velocity components utilizing the calculated pressure correction. Use the 
hydrostatic pressure equation to determine the flow depth. 

7. Assemble and solve the sediment concentration equation resulting from the discretization, 
equation (11). Apply SIP until the sum of absolute residuals is reduced by a factor of 5. 

8. Return to step 2 and repeat until the sum of the absolute residuals in the momentum and 
continuity equations has fallen by two orders of magnitude. 

9. Advance the time by an increment Δt. 
 

CONCLUSION 
 
In this paper, the formulation of a modified Marker-in-Cell model has been presented. This 
technique entails tracking Lagrangian momentum tracers that have neither mass nor volume 
through an Eulerian mesh that characterizes the field variables. As tracers accelerate and 
decelerate due to interactions with each other and topography, erosion and deposition are 
induced. For each tracer, the momentum equation is solved by the fourth order in space Runge 
Kutta method, whilst the Eulerian continuity equation is discretized implicitly and solved by the 
SIMPLER method (Patankar (1980)) to achieve improved mass conservation and velocity-
pressure coupling. The model operates in 2+ dimensions, whereby fluid flow and sediment 
transport are simulated in the horizontal plane and depth and deposits are simulated in the 
vertical plane. Non-uniform total-load sediment transport is simulated using a non-equilibrium 
approach, dividing the sediment mixture into size fractions and accounting for the effects of 
hiding and exposure. Historical erosion and deposition is represented by a mixing layer 
approach. It is believed that the use of the Marker-in-Cell method formulated in this paper may 
permit the simulation of some of the more stochastic features observed in braided rivers (e.g. 
Paola, 1996). 
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