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Modelling groundwater changes due to
fluctuating dam discharge
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In this contribution, two numerical methods are used to predict the free surface changes in a sand bar due
to fluctuations in river stage. One is a fixed-mesh, finite-element seepage formulation including Biot's
consolidation theory, and the other is a boundary element method solution of the Laplace equation. Both
models give overall predictions that are in good agreement with field data recorded at an instrumented sand
bar in the Colorado River subjected to stage fluctuations from operation of the Glen Canyon Dam. The
boundary element method appears to offer significant advantage in data preparation and computational times
over the finite-element method for the problem studied in this paper.
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Introduction

The problem of flow-through porous media appears in
many disciplines in science and engineering. The
traditional problem of flow-through porous media is the
analysis of unconfined seepage flows to determine the
stability of slopes, dams, retaining walls, efficiency of
drainage systems, subsidence, etc. The solution to
unconfined flow problems usually requires a solution of
the Laplace equation derived from Darcy’s law and
continuity. The location of the phreatic surface or free
surface is not known and becomes part of the required
solution. Apart from problems with very simple
geometries, where closed-form solutions may be found,
most problems have to be solved by numerical
(finite-element, boundary element, and finite-difference)
or, less popular now, graphical methods.

In finite-element applications, two schemes are
popular. The first is a variable mesh procedure!™ in
which a location of the phreatic surface is assumed and
the domain below the phreatic surface is discretized. The
phreatic surface is treated as an impervious boundary. A
search is then made during the solution for locations
where the potential head equals the elevation head. The
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mesh is then redefined so that the free surface nodes are
located where this condition is satisfied. The second is
an invariant, constant mesh or fixed-mesh procedure®1°
in which the whole domain (saturated and unsaturated
zones) is discretized. The location of the phreatic surface
is found by interpolating between positive and negative
pressure heads. The coefficient of permeability for the
saturated soil is retained for elements with positive
pressure heads but changes according to a pressure-
coefficient of permeability relationship for elements with
negative pressure heads. An examination of the
differences between and variations of the two schemes
are presented by Cividini and Gioda.!®

The boundary element method offers less time
consuming data input because only the boundary of the
problem is discretized rather than the whole domain as
in the finite-element method. In the boundary element
method, functions are defined that satisfy the governing
equations exactly with approximations confined to the
boundary conditions. In contrast, in the finite-element
method, the boundary conditions rather than the
governing equations are satisfied exactly.

Many of the seepage problems that have been solved
using the finite-element method involved an earthen dam
in which one face is subjected to either sudden or slow
drawdown (see, for example, Ref. 11). Liggett' used the
boundary element method to study the change in
phreatic surface in an earth dam due to the transient rise
of water level in the reservoir. In transient problems, each
cycle of infiltration and seepage will incur stress changes
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that may influence the location of the phreatic surface in
certain types of soils. A fall in river stage would cause a
decrease in the hydrostatic pressure on the face of the
river bank and a decrease in pore water pressure within
the bank with a concomitant increase in effective stresses.
The soil will consolidate and the permeability will
decrease. A rise in river stage would do exactly the
opposite. In the conventional approach to groundwater
problems, the stress changes are uncoupled from flow
problems.

In this contribution, we present a comparison of the
predictions from a finite-element coupled seepage—
stress—consolidation analysis using Biot’s consolidation
theory with those from a boundary element solution of
the Laplace equation. We examine both of these
approaches against field data collected along an
instrumented sand bar in the Colorado River during
fluctuating discharge from the Glen Canyon Dam. The
effects of stress changes from transient flow, included in
the finite-element method, are contrasted against the
boundary element solution of Laplace’s equation.

Seepage—stress—consolidation formulation

Biot!3 presented a coupled theory for consolidation. In
the coupled theory, pore water pressures and total
stresses are linked by the principle of effective stresses.

where ¢}; is the total stress, ;; is the effective stress, §;;
is the Kronecker delta, and u is the pore water pressure.
From the equations of equilibrium we obtain
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where B; is the body force unit volume. The equation
of continuity together with Darcy’s law results in
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where k., k,, and k, are the coefficients of permeability
in the x, y, and z cartesian directions, y,, is the unit weight
of water, which is assumed to remain constant, and K,,
is the bulk modulus of water. The volumetric strain ¢, is

g, =&, t¢&,+eg, 4

where ¢, ¢, and ¢, are the principal normal strains
in the x, y, and z cartesian directions. Compressive
volumetric strains are taken as positive. Equation (3)
should be compared with the conventional equation used

in groundwater modelling, that is,
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where S is the storativity and A( = z + u/y,,) is the head
in the acquifer; z is the elevation head.

The volumetric strain can be found from the
constitutive relationship for the porous media. In the
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case of an elastic porous medium,
3p(1 —=2w)  p
80 = = —
E K
where y is Poisson’s ratio, E is Young’s modulus, p = 1/3
5,/0;; is the mean or octahedral effective stress, and K is

the bulk modulus of the soil. Substituting equations (1)
and (6) into equation (3), we obtain
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where p'=1/3 §,0; is the total mean stress. Thus,
equations (8) and (5) are identical if p’ is constant and in
which case § =y, /(1/K, — 1/K,,).

In transient flow, the soil can undergo both elastic
and plastic volumetric changes. Let us consider the
consolidation of the soil as represented by the void
ratio—In (p) curve, as approximated by Schofield and
Wroth,'* and shown in Figure 1. The curve AM is the
loading curve with a slope of A and MC is the unloading/
reloading curve with a slope of k. Now consider a soil
layer with the groundwater level at time, ¢,, at a distance
y from the ground surface (Figure 2). If the groundwater
level drops to a new position M, the mean effective stress
on a typical element, X, located at a distance z from the
surface will increase from, say, an initial value of p, to
p.. The soil consolidates and the total change in void
ratio is

Se=AlnPm )
Do
and the total change in volumetric strain is
A p
de, = In ="
1+e, p, (19)

where ¢, is the initial void ratio. In the soil mechanics
literature, compression is taken as positive, so A is
positive. The total change in volumetric strain can be
decomposed into two parts, an elastic part, de;, and a
plastic part, b, such that

de, = 0& + Ol (11)

void ratioc M

Figure 1. Void ratio—mean effective stress relationship.
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Figure 2. Effects of water level variation on a typical soil element.

If the groundwater level were to rise to its original
position, the path followed will not be MO but MC
(Figure 1), because the soil had previously undergone
changes in both elastic and plastic volumetric strains.
The elastic volumetric strain component is obtained from
the slope of the line MC whereby

In Pm (12)
+e P

where i is taken as positive for compression, and the
plastic component is

€
oe; =

A Ky P (13)
te Do

Suppose that the groundwater level now drops at or
below the position of the typical soil element. The mean
effective stress will now increase to a value p,, which is
greater than the maximum past mean effective stress p,,.
The total change in volumetric strain as a result of this
loading condition (path CMD) is

1
Se, = {K ln<p'" +2 1n<&>} (14)
1 +e, P, Pm

If a rise in water level were to subsequently occur up to
the original groundwater level, the soil would follow path
DE. The changes in elastoplastic volumetric strains
resulting from transient conditions can now be easily
incorporated into equation (3). For example, if the
groundwater level fluctuations are within the elastic
region, MC, equation (3) becomes
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and if the past maximum mean effective stress is
exceeded, the governing elastoplastic equation is
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The soil parameters x and 4 can be found by conducting
a consolidation test on the soil and finding the slopes of
the loading and unloading lines.

The solution for equation (3), over the whole domain,
is found using standard numerical techniques. For
example, for a finite-element solution, using variational

principles, equation (3) becomes
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where n,, n,, and n, are direction cosines of the unit
outward normal vector, V is volume, A4 is the surface
area of the domain, and ¢ is a small increment.

In order to solve this time-marching problem, the
following approximation is made

jtmu(t)dt = {(1 = @ulty) + oty )}dr (18)

where « is a constant whose magnitude is chosen to
yield optimum stability. The virtual work equation is

J 0};08,;dV = J oijn;0X;dA + J BoX,dv  (19)
14 A |4

where ¢;; is the strain tensor and X; is the displacement.
The coupled equations (17) and (19) can now be used
in a finite-element scheme to solve the transient
seepage—stress—consolidation problem. The finite-ele-
ment method and programming methodology occur
extensively in the literature (for example, Zienkiewicz et
al.'® and Hinton and Owen’® and will not be repeated
here. In our formulation, we specify a value of a = 1;
Booker and Small!” showed that the coupled equations
are unconditionally stable provided o > 0.5.

Flow in the unsaturated zone

Biot’s equation is valid for a saturated soil. In order to
account for the unsaturated soil domain (soil above the
phreatic surface), we selected the invariant mesh
procedure (Desai,” Bathe and Khoshgoftaar,’ and
Cividini and Gioda!®). The advantages of using this
procedure for transient analysis are presented by Li and
Desai.!' In our analysis, we used the following
modifications to effectively use equations (17) and (19).

1. The real pore water pressures are set to zero for the
soil domain above the phreatic surface (Figure 3).

2. Negative pore water pressure distributions (Figure 3)
are calculated in region A (unsaturated domain). In
region B (saturated domain), the pore water pressures
are greater than zero.

3. The permeability of the soil in the unsaturated domain
is assumed to be approximately one thousandth of the
permeability of the saturated domain.®

4. The location of the phreatic surface is interpolated
between the negative and positive pore water
pressures.® !

5. The permeability in the saturated domain changes as
a result of consolidation from changes in effective
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Unsaturated Zone
phreatic surface

External Water Pressure I
high water level ___¥V _ \ A
low water level,__i - .\ v

- b

|
Saturated Zone

Figure 3. Pore water pressure head variation assumed in the
saturated and the unsaturated zones.

stresses due to the transient fall and rise of river stage.
Based on work done by Wood and Al-Tabba,'® we
adopt an equation of the form

k = ae® (20)
where a and b are constants for a particular soil and e
is the void ratio. These constants are determined from
consolidation tests. The coefficient of permeability will
change significantly if the soil is a soft clay or a soft silty
clay or very loose sand. For medium dense to dense sand
or for clays that have been subjected to many cycles of
similar river stage fluctuations, very little change in the
coefficient of permeability can be expected.

Boundary element formulation

The formulation of the boundary element method for
potential problems can be based on direct or indirect
methods.'® Using the direct formulation, we start with

Green’s second identity
oG oo
®——-G—|dI'

f (®V? G — GV*D)Q = j
a on on

r

21

where @ is the potential satisfying Laplace equation in
the domain Q, and G is taken as the free space Green’s
function which, for a two-dimensional case, is given by

1
G=——1Inr

2 @2)

where r is the distance between the source point and the
field point.

Substituting equation (22) into equation (21) and
evaluating the left-hand side of equation (21) we get, after

Liggett and Liu?°
® 0 o0
cpoP) = | (- L —mrZ ar
r on on

r
where n is the outward normal on I', P represents the
source point, C(P) = 2n if P is an internal point, but
equals f if P is on the boundary, § being the included
internal angle at P. For a smooth boundaryat P, § = =.
To solve a problem in which V2® = 0, the boundary
I' is divided into M elements (linear for this study) linking
N nodes. The source point P is taken, in turn, to be at
each of these N nodes to get N equations. The total

(23)
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number of unknowns is 2N—the potential ® and its
normal derivative 0®/0n at each node. However, in any
well-posed problem, half of them—the potential, the
derivative, or a relation between them specified at each
node—will be known. Therefore, the system of N
equations can be solved for the remaining N unknowns.
Potential at internal points can then be obtained by
taking P as an internal point and evaluating the
boundary integral in equation (23).

For linear elements, the boundary integration can be
accomplished analytically, but for higher order elements
numerical integration has to be used.?® Care should be
taken at the junction of two different kinds of boundaries.
In this study, a double node is provided at sharp changes
in boundary, and compatibility conditions are used to
avoid the resulting singularity.?!

The location of the free surface is obtained by writing
the free surface conditions in finite-difference form.2%-2%
The matrices are formed on the basis of the previous time
step values and, therefore, an iterative scheme is needed
to ensure convergence. However, using a small time step
will obviate the necessity of iterating at each time step.

Test site and description

The Glen Canyon Dam in the Colorado River was
constructed to reclaim arid land, to control floods, and
to generate hydroelectricity. The dam has the capacity
to produce 1336 MW of electricity with a maximum
discharge of 937 m3/sec.?® Because hydroelectric dams
have the ability to produce electricity on demand in
comparison with, say, coal-fired plants, the Glen Canyon
Dam is operated to supply premium peak power. As a
consequence, the river stage downstream of the dam
fluctuates daily. Typical fluctuation of river stage on a
diurnal basis is between one to three meters with some
narrow river sections reaching four meters.** It is
claimed by the public that this fluctuation of water level
is eroding sand bars downstream of the dam and
negatively affects riparian habitat and river recreation.
A multiagency, muitidiscipline study was initiated by
the U.S. Secretary of the Interior to determine whether
the operation of the dam has a negative impact on the
environment. As part of this study, under the aegis of the
Glen Canyon Environmental Studies (GCES) Phase II,
an investigation was commissioned to determine the
influence of variable discharge regimes on Colorado
River sediment deposits below the Glen Canyon Dam.
Several sand bar sites along the Colorado River
downstream of the dam were selected for detailed studies
with the dam discharging what is termed “research
flows” by GCES.?* Three sites were chosen for elaborate
instrumentation and measurements. In this paper, only
one of these sites will be briefly described to provide the
physical setting from which the data were gathered.
Sand bar —6.5R is located on the right bank of the
Colorado River about 10.5 km upstream from Lees Ferry
and some 16 km downstream of the Glen Canyon Dam
(Figure 4). It is one of the smaller sand bars in the study
program; its area is about 3700 square meters. This sand
bar, at the time when the first batch of instrumentation
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Figure 4. Location of study site.
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Figure 5. A stratigraphic cross-section of sand bar —6.5R.

was installed, had a gentle slope of approximately 1:6
(Figure 5). It is composed of a well-graded sand (Figure
6) with an average grain size of 0.13 mm. A thin layer of
clayey silt, with an average thickness about 0.3 m in a
half bowl shape, separates the beach into two similar
sand zones. Along three cross-sections of the beach, a
network of pore water pressure sensors was installed by
U.S. National Park Service hydrologists. The outputs
from the pore water pressure sensors were monitored
every 20 minutes, stored on a memory board, and
retrieved by downloading to a portable computer.
Rainfall and other hydrologic measurements were made
as part of the instrumentation and measurement package
adopted to monitor the selected sand bars. For this

N\

Percent finer

10° 10’

Grain size (mm)

Figure 6. Grain size distribution in sand bar —6.5R.
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contribution, our concern is with the measurements of
the groundwater and the river stage.

Field and laboratory test data

Considerable groundwater and river stage data were
gathered at sand bar —6.5R. We will only use an
arbitrarily selected small portion of this data to compare
with the two numerical analyses for free surface
determination under transient flow conditions. Between
July 2 and July 12, 1990, the dam was regulated to follow
a research flow regime described as Flow G. The range
of discharge was kept reasonably constant with a
minimum discharge of 227m3/s and a maximum
discharge of 800 m3/s (Figure 7(a)). The measurements
of river stage and groundwater levels for a particular
well, Well no. 2, over a period of five days from July 7
to July 12, 1990, are shown in Figure 7(b). Another
research flow, Flow E, was implemented from September
17 to September 27, 1990; the minimum discharge was
80m3/s and the maximum discharge was 750 m?/s
(Figure 8(a)). The measurements of river stage and
groundwater levels for Well no. 2, over a period of five
days from September 17 to September 22, 1990, are
shown in Figure 8(b).

Field permeability measurements using a falling head
permeameter gave an average coefficient of permeability
of 1.3 x 1072 cm/sec for the sand. Laboratory constant
head permeability tests on the clayey silt gave a
coefficient of permeability of 3.0 x 10™% cm/sec. There
was no significant change in permeability over the
five-day period of measurements for either Flow G or
Flow E. This indicates that settlement due to changes in
effective stresses was stabilized.

Field densities were determined by pushing thin,
sharp-edged, 50-mm internal diameter x 150-mm long

Flow G

Flow (mYs)
88888888

(] 48 96 144 182 240 288
Hours
Figure7(a). Hydrograph of Flow G from July 2 to July 12, 1990.
83
825
E o
z
o
E 815
>
=
z &
80.5 FLOW G
----- WELL#2
— RIVER STAGE
80
0 20 40 60 80 100 120
TIME (hrs)
Figure 7(b). River stage and groundwater data from well no. 2

for Flow G from July 2 to July 12, 1990.
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Figure 8(a). Hydrograph of Flow E from September 17 to
September 27, 1990.
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Figure 8(b). River stage and groundwater data from well no. 2
for Flow E from September 17 to September 27, 1990.

pipes into the soil and then weighing the soil contained
in the known volume of the pipe. Water contents were
measured using a field moisture tester. Sealed sand
samples were taken to the geotechnical laboratory at the
University of Arizona where tests were conducted for
water content, grain size, friction angle and cohesion
(shear box and triaxial tests). The sand was found to have
an angle of friction of 30° and its in situ void ratio was
0.76.

Numerical simulation

The slope of sand bar — 6.5R, at the time the data was
collected, was not smooth but undulated slightly due to
rill erosion. We simplified the geometry for the analyses
by using an average slope of 1:6. The cross-section shown
in Figure 5 was discretized into 200 quadrilateral
elements with a cluster of small elements adjacent to the
slope and large elements toward the back. The back face
AB was treated as an impermeable face. For the
boundary element method, the boundary was discretized
into 26 segments. The clayey silt was omitted from the
boundary element method because this model was
developed for a single, homogeneous, soil layer. The river
stage was discretized into half-hour time segments for
the numerical simulations.

The historical river stage records indicate that sand
bar — 6.5R was subjected to river stage fluctuations
greater than the current difference in the maximum and
minimum river stages shown in Figures 7 and 8. We
assumed that the sand in sand bar —6.5R can
be modelled as an elastic-rigid plastic material obeying
the Mohr-Coulomb failure criterion. This criterion is
well described in the soil mechanics literature (for
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example, Ref. 14). In its simplest form, the Mohr—
Coulomb failure criterion is given as

‘cf=c+aftan¢ (24)

where 1, is the failure shear strength, ¢ is cohesion, o is
the normal stress at failure, and ¢ is the angle of internal
friction. The clayey silt was modelled as an elastoplastic
material following the modified Cam-Clay model.?® The
following soil parameters, determined from soil tests,
were used:

Sand Clayey silt

Young’s modulus A=0.11 k = 0.02
(E) = 10,000 kN/m? Angle of friction = 20°

Void ratio = 0.76 Void ratio = 0.94

Angle of friction = 30° Unit weight = 16 kN/m?

Unit weight = 16 kN/m?

Poisson’s ratio = 0.33

Comparison of field data with predictions from the
models

Computer programs of the two numerical methods were
run using the data presented in the previous section. No
calibration run was made and no parameter was varied
to provide a good match between the predicted and the
field data. Thus, the two data sets were used for
verification runs.

The comparison of the free surfaces between the model
predictions and the field data from Flow G and Flow E
are shown in Figures 9 and 10. Both models seem to be
particularly good in matching the field data during rising
river stage. The finite-element method shows better
agreement with the field data for the falling river stage

83

— FIELDDATA FLOW G
iy
-+ FEM twith clayey tR laye) WELL #2

ELEVATION (m)
@ 8
3 n

-4
n

81
0 20 40 60 BO 100 120

TIME (hrs}

Figure 9. Comparison of field data with predictions from the
finite-element and boundary element predictions for Flow G.
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Figure 10. Comparison of field data with predictions from the .

finite-element and boundary element predictions for Flow E.
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than the boundary element method. The finite-element
method accounts for the clayey silt layer, stress, and
volumetric changes of the soil from transient river stage.
However, the results from the finite-element method
show very small volumetric changes (as expected), and
neglecting the clayey silt layer did not change the
phreatic surface significantly. The possible reason for the
differences in the predictions between the two numerical
models stems from the effects of saturation —desaturation.
The finite element takes account of this, but the boundary
element does not. The numerical models were also used
to predict the groundwater level from other wells located
in sand bar —6.5R and similar results were obtained.

Conclusions

The models described in this paper provide insights into
phreatic surface changes during transient flow. The
capability of the models to make predictions of the
changes in phreatic surface due to transient flow was
reflected by the good agreement with field data. The
finite-element method appears to give better overall
predictions than the boundary element method especially
for time intervals when the rate of fall of river stage is
relatively slow. However, the boundary element method
offers quite an advantage in predicting the position of
the phreatic surface under transient conditions for the
type of problems studied in this paper, considering the
complexity of the finite-element model, its lengthy data
input, and longer computational time.
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