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INITIATION OF DEBRIS FLOWS IN TRIBUTARIES OF THE
COLORADO RIVER IN GRAND CANYON, ARIZONA

Peter G. Griffiths,! Robert H. Webb,! and Theodore S. Melis!

ABSTRACT

Debris flows are initiated in tributaries of the Colorado River in Grand Can-
yon when intense rainfall causes failures in colluvium and (or) bedrock. Most
debris flows occur in the summer during localized convective thunderstorms with
rainfall intensities as high as 40 mm/hr. Rarer and larger debris flows occur during
unusually warm frontal storms in winter, Hourly precipitation data suggest that
storms that cause debris flows terminate with a period of intense rainfall, a charac-
teristic that complicates the use of daily rainfall records in assessing debris-flow
hazard. Recurrence intervals for 1-day rainfall associated with 37 recent debris
flows range from <1 to >50 years, with most <10 years. Recurrence intervals for the
multi-day rainfall of storms associated with debris flows range from <1 to 158
years, but most were >10 years. The low recurrence intervals of debris-flow pro-

ducing rainfalls, compared with the 10-50 yr recurrence intervals for most debris

flows, underscores the co-dependence of debris-flow initiation on geologic factors,
including bedrock type and antecedent soil-moisture conditions. The primary geo-
logic factor influencing debris-flow initiation in Grand Canyon is the exposure of
shale units at heights >100 m above the river. Exposed shale bedrock fails readily,
either producing debris flows directly or contributing source material to wedges of
colluvium that may fail later. Shales also provide silt- and clay-size particles that in
part determine the rheological properties of debris flows.

INTRODUCTION

Debris flows occur in at least 600 tributaries of the Colorado River in Grand
Canyon between Lees Ferry and Surprise Canyon, Arizona (fig. 1; Melis et al.,
1994; Griffiths et al., 1996). These mass movements transport poorly sorted sedi-
ment, including very large boulders that form rapids at the mouths of tributaries and
control the longitudinal profile of the Colorado River. In most tributaries, debris
flows reach the Colorado River on average once every 10-50 years, contain up to 80
percent sediment by weight, and transport particles ranging in size from fine clay to
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Figure 1. The Colorado River in Grand Canyon, Arizona.

large boulders (intermediate-axis >3 m) (Melis et al., 1994). A.rowo.nﬂuwwwmwmw %MM
aﬁm form of steep canyons (mean channel slope = o.»mv U._ iﬁ maa_.oow exposed
umerous near-horizontal strata of sedimentary rock (fig. 2). Mos o e e
e d as vertical cliffs, broken occasionally by steep slopes w:.m les where
oxWOmo nits, predominantly shales, have eroded. As bedrock cliffs Mn e
or M_. M:oo.swo:mmaa material accumulates on the slopes and caﬂu MMS Sreep
Q.Ma oMm of colluvium, perched in settings of high moﬁn:»_ n:ﬂ.@m% awnmmwon s
m\ m in many other locales (Caine, 1980), amc:m.noim in Gran e
ofw\._ initiated when rainfall of sufficient intensity triggers single or mu N;o ope
mwwf__nwm_m: either the weathered bedrock cliffs or the wedges of %o:wﬁmBmEBmﬁm
matic conditions that trigger failures are typically very _Oo».:Nn._.mmsBon mm_amam o
o ey Eonwnw“mao: ARMM _ﬂ%_ﬁ_mw_wmwmmhu%amewwﬂ:m:ona by the sparse
i ipitation results in slope f ,
%%mmm%mwo%a steep relief of these arid bedrock canyons.

PRECIPITATION

Historically, most Grand Canyon debris flows have ooo:ﬂo%ﬁﬂﬂﬂ:% mmmwm

ized. convective summer thunderstorms that affect only one oﬂimm u&m%&:?:

M: a mBa These storms typically OoOHE.mBS July wﬁommw_mmmu »om_,a :w.m a:...umosm L
; derstorms typically is intense, ,

mmwwwmmg Mwﬂwwwo:a (fig. Aw% Debris flows in summer months are not related to
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Figure 3. Standardized seasonal precipitation averaged from eight stations in the
vicinity of Grand Canyon. Positive values represent above average seasonal pre-
cipitation; negative values represent below average seasonal precipitation. Aster-
isks indicate seasons during which debris flows have occurred.

et al., 1977; Webb et al., 1989). Like summier debris flows, the occurrence of winter
debris flows apparently is unrelated to the amount of seasonal precipitation (fig.

3b).

The intensity of rainfall necessary to initiate Grand Canyon debris flows is
poorly known because only a few weather stations are near the initiation sites. Pre-
vious studies have reported intensities 525 mm/hr and total rainfalls of 16 to 50
mm associated with debris flow initiation (Melis et al., 1994). Peak rainfall inten-

sity associated with three additional historic debris flows ranged from 10 to 40 mm/
hr (fig. 4a-c). However, rainfall intensities at the debris fAow locations are unlikely
to be as low as 10 mm/hr. This minimum was recorded more than 40 km distant

from the initiation site and it is unlikely that the rain gage recorded the peak inten-
sity of the storm.

We calculated recurrence intervals (RI) for precipitation associated with 37
historical Grand Canyon debris flows (fig. 5) using one-day and multi-day storm
precipitation data (Griffiths et al., 1996). Storm precipitation is totaled over consec-
utive days of precipitation (ranging from 2 to 9 days). The RI of precipitation on
single days when debris flows occurred ranged from <1 yr to 100 yrs, with 88 per-
cent of the Rls <10 yrs, (fig. 5b). Precipitation from multi-day storms associated
with debris flows had larger Rls, ranging from <1 to 168 yrs, with 51 percent of the
events <10 yrs (fig. 5b). However, it is unlikely that precipitation intensity at the
point of initiation 7s as common as daily RIs suggest, because most regional gages
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Figure 4. Hourly precipitation at nearest stations during three historic debris flows
(A-C) and one stream flow flood (D) in tributaries of the Colorado River in Grand
Canyon. Distance between station and tributary indicated.

are several kilometers from initiation points. Webb et al. (1996) indicate that Grand
Canyon debris flows are only weakly related to larger regional storms. Neverthe-
less, on the basis of regional precipitation alone, Grand Canyon debris flows (RI =

10-50 yrs) are better related to the recurrence interval of multi-day storms than to
single-day rainfall.

Although monthly precipitation was high when most historic debris flows
occurred (Webb et al., 1996), seasonal precipitation was not consistently high (fig.
3). Grand Canyon debris flows do not necessarily require season-long buildup of
antecedent soil moisture; however, the importance of above-average rainfall in the
days preceding the debris flow is reflected in the Rls for storm precipitation. The
true RI for daily precipitation for summer debris flows may not be known because
the storms are localized and the climate stations typically are kilometers from the
affected drainage basins. Storms that produce debris flows typically end in a strong
microburst of high rainfall intensity (fig. 4a-c). It is most likely that slope failures
occur during this period. Storms that do not have a terminal microburst tend to pro-
duce large stream floods rather than debris flows (fig. 4d).

SLOPE FAILURES

Importance of Shale

Debris flows in Grand Canyon are initiated when sufficiently intense rainfall
triggers a slope failure in either bedrock or colluvial, though not all slope failures
result in debris flows. The occurrence of a debris flow is highly dependent on the
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Initiation Mechanisms

Melis et al. (1994) identified four mechani i i
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Grand Canyon: 1) the failure of weathered bedrock; 2) the :?w%omoo Mmm%m_,mw% Mu%
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off falling onto unconsolidated colluvial wedges, 3) direct failure of colluvial
wedges, 4) combinations of the first three mechanisms (Fig. 6). Here, we extend the
data of Melis et al. (1994) by adding information from 1994-1996 debris flows.

Many of the largest debris flows begin with the failure of weathered shale
bedrock or interbedded shale and sandstone units. These bedrock failures occur
most often in either the Hermit Shale or Supai Group, although failures also occur
in formations such as the Bright Angel Shale. Bedrock failures are most often trig-
gered by the intense, localized rainfall of convective summer thunderstorms, but
some of the largest bedrock failures have occurred during warm winter storms
(Cooley et al., 1977).

Most Grand Canyon debris flows are produced by the “firchose effect”
(Johnson and Rodine, 1984). This mechanism occurs in Grand Canyon when runoff
pours over a cliff face, impacts colluvium at the base of the cliff, and forces a fail-
ure. This process frequently occurs in drainage basins that contain catchments at
high elevations above the Redwall Limestone. Runoff from these catchments typi-
cally pours as a waterfall over the vertical Redwall cliffs and may impact colluvial
deposits below. As with failures in bedrock, the firehose effect is usually triggered
by small summer thunderstorms but can also occur during less-intense regional

storms, especially in large tributaries that concentrate runoff at a single waterfall
(particularly Prospect Canyon; Webb et al., 1996).

Failures of colluvial wedges occur during either intense or prolonged rain-
fall, and usually result in smaller debris flows. In the case of low-intensity, sus-
tained rainfall, saturation may be hastened by concentrated sheetflow runoff from
cliff faces. This substantial runoff may be concentrated at the intersection of a col-
luvial wedge and a cliff face, augmenting direct precipitation. Multiple source areas
combined with the extreme topographic relief of Grand Canyon commonly result in
combinations of the three basic initiation mechanisms, particularly in larger drain-
age basins and during widespread winter storms.

SUMMARY AND CONCLUSIONS

Debris flows in the canyons tributary to the Colorado River are initiated
when intense rainfall causes a failure in weathered bedrock cliffs and (or) slopes of
colluvium. Intense rainfall that initiates most Grand Canyon debris flows comes
from convective summer thunderstorms and is highly localized. However, some of
the largest debris flows have been caused during unusually warm winter frontal
storms. In both cases, failures in source material occur during a microburst of rain-
fal} as intense as 40 mm/hr at the end of the storm. The local nature of these condi-
tions makes it very difficult to predict accurately when and where debris flows may
occur solely on the basis of precipitation unless there is a recording rain gage close
to the failure point(s). However, this is rarely the case, and regional precipitation
may sometimes be useful in predicting debris flows if used with caution. On the
basis of regional precipitation, debris flows are better related to extreme multi-day
storms than to single days of high precipitation. Grand Canyon debris flows do not
necessarily occur in the wettest months or seasons, but rainfall several days before

the debris flow is extremely important.

Most Grand Canyon debris flows are the result of failures in colluvial
wedges, but some of the largest involve the direct failure of exposed bedrock. In all
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cases, the presence of shale units exposed at heights >100 m above the Colorado
River is an essential factor. Shale units either fail directly or erode to form slopes on
which colluvium accumulates. Shales also provide most of the fine sediment that is
essential to the mobility and transport competence of debris flows.
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THE INFLUENCE OF HILLSLOPE SHAPE ON DEBRIS-FLOW
INITIATION

Gerald F. Wieczorek,! Member ASCE , Giuseppe Mandrone?, and Lee DeCola®

ABSTRACT

A severe storm of June 27, 1995, in Madison County, Virginia, triggered more
than 1,000 debris flows. Sites were sampled to determine which topographic factors
contributed most to soil-slip initiation. Logistic regression analyses of failure/non-
failure conditions indicate that hillside curvature, distance to ridge, and drainage area
predict soil-slip initiation. The model from logistic regression confirmed field
observations in this area that planar slopes were more prone to failure than concave
slopes. The probability of failure in the model increased with drainage area and
decreased with distance from ridge. The influences of drainage area and distance to
ridge based on the model are difficult to interpret because the soil-slip process is very
complex and involves other geologic and hydrologic factors.

INTRODUCTION

Debris flows frequently initiate in topographic concavities filled with colluvial soils
on steep hillsides (Pierson, 1980; Reneau and Dietrich, 1987; Ellen, 1988; Sitar et al.,
1992), although in some environments, planar slopes are more prone to failure
(Jacobson et al., 1993). Based on local usage in the eastern United States, Hack and
Goodlett (1960) termed these topographic features above the permanent stream
network “hollows”, and noted that they have surface runoff only during storms of high
rainfall intensity. Concentration of surface and subsurface water flow may theoretically
account for initiation of debris flows along the axes of these topographic depressions
or swales (Wilson and Dietrich, 1987). As found by Dengler et al. (1987), thickness of
soil over bedrock may vary greatly on steep hillsides adjacent to hollows. Thick
colluvial soils may accumulate in the center of these swales from a variety of slope

!Civil Engineer, U.S.G.S,, National Center MS 955, Reston, VA 20192, USA
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2Geologist, Politecnico di Torino, Torino, ITALIA; *Scientist, U.S.G.S.,
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